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1Pontificia Universidad Católica de Valparaı́so, 2362807 Valparaı́so, Chile
2Universidad San Sebastián, 8420524 Santiago, Chile
3Universidad Central de Chile, 8370178 Santiago, Chile
4Universidad Autónoma de Chile, 7500138 Santiago, Chile
5Universidad Cientifica del Sur, Lima 18 Lima, Peru
6Universidad de Playa Ancha, 2360003 Valparaı́so, Chile
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The Set Covering Problem consists in finding a subset of columns in a zero-one matrix such that they cover all the rows of the
matrix at a minimum cost. To solve the Set Covering Problem we use a metaheuristic called Binary Cat Swarm Optimization. This
metaheuristic is a recent swarm metaheuristic technique based on the cat behavior. Domestic cats show the ability to hunt and are
curious about moving objects. Based on this, the cats have two modes of behavior: seeking mode and tracing mode. We are the
first ones to use this metaheuristic to solve this problem; our algorithm solves a set of 65 Set Covering Problem instances from
OR-Library.

1. Introduction

The Set Covering Problem (SCP) [1–3] is a classic problem
that consists in finding a set of solutions which allow to cover
a set of needs at the lowest cost possible.There aremany appli-
cations of these kinds of problems; themain ones are location
of services, files selection in a data bank, simplification of
boolean expressions, and balancing production lines, among
others.

In the field of optimization, many algorithms have been
developed to solve the SCP. Examples of these optimiza-
tion algorithms include Genetic Algorithm (GA) [4–7], Ant
Colony Optimization (ACO) [8, 9], and Particle Swarm
Optimization (PSO) [10–13]. In this work we use a Cat Swarm
Optimization (CSO) algorithm to solve the SCP.

By simulating the behavior of cats, CSO can solve opti-
mization problems. It has been analysed that cats spend most
of their time resting when they are awake. While they rest,
they move from their position carefully and slowly. This
behavioral mode is the one called seeking mode. In the
tracing mode, a cat moves according to its own speed for all
dimensions. This search method will be discussed in detail
later in this paper.

The CSO was originally developed for continuous valued
spaces. But there exist a number of optimization problems,
as the SCP, in which the values are not continuous numbers
but rather discrete binary integers. Sharafi et al. introduced
a discrete binary version of CSO for discrete optimization
problems: Binary Cat Swarm Optimization (BCSO) [14].
BCSO is based on CSO algorithm proposed by Chu et al.
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in 2006 [15]. The difference is that in BCSO the vector posi-
tion consists of ones and zeros, instead of the real numbers of
CSO.

In this paper we use a BCSO algorithm to solve the
Set Covering Problem. Our proposal is tested in different
instances of SCP.

To the best of our knowledge, this is the first work solving
SCP with BCSO.

This paper is organized as follows. In Section 2, there is a
brief description of what Set Covering Problem is. Section 3
is about what BCSO is and the explanation and algorithm of
behaviors. In Section 4, there is an explanation of how BCSO
was used for solving the SCP. Section 5 discusses an analysis
and results table. Finally, Section 6 is the conclusions.

2. Set Covering Problem

The SCP [16–18] can be formally defined as follows. Let 𝐴 =
(𝑎
𝑖𝑗
) be an 𝑚-row, 𝑛-column, zero-one matrix. We say that

a column 𝑗 can cover a row if 𝑎
𝑖𝑗
= 1. Each column 𝑗 is

associated with a nonnegative real cost 𝑐
𝑗
. Let 𝐼 = {1, . . . , 𝑚}

and 𝐽 = {1, . . . , 𝑛} be the row set and column set, respectively.
The SCP calls for a minimum cost subset 𝑆 ⊆ 𝐽 such that
each row 𝑖 ∈ 𝐼 is covered by at least one column 𝑗 ∈ 𝑆. A
mathematical model for the SCP is

V (SCP) =min ∑

𝑗∈𝐽

𝑐
𝑗
𝑥
𝑗 (1)

subject to ∑

𝑗∈𝐽

𝑎
𝑖𝑗
𝑥
𝑗
≥ 1, ∀𝑖 ∈ 𝐼, (2)

𝑥
𝑗
∈ {0, 1} , ∀𝑗 ∈ 𝐽. (3)

The objective is to minimize the sum of the costs of the
selected columns, where 𝑥

𝑗
= 1 if column 𝑗 is in the solution,

0 otherwise.The constraints ensure that each row 𝑖 is covered
by at least one column.

The SCP has been applied to many real world problems
such as crew scheduling [19–21], location of emergency
facilities [22, 23], production planning in industry [24–26],
vehicle routing [27, 28], ship scheduling [29, 30], network
attack or defense [31], assembly line balancing [32, 33], traffic
assignment in satellite communication systems [34, 35], sim-
plifying boolean expressions [36], the calculation of bounds
in integer programs [37], information retrieval [38], political
districting [39], stock cutting, crew scheduling problems in
airlines [40], and other important real life situations. Because
it has wide applicability, we deposit our interest in solving the
SCP.

3. Binary Cat Swarm Optimization

Among the known felines, there are about thirty different
species, for example, lion, tiger, leopard, and cat [41].Though
many have different living environments, cats share similar
behavior patterns [42].

For wild cats, the hunting skill ensures their food supply
and survival of their species [43]. Feral cats are groups with

a mission to hunt for their food and are very wild feline
colonies, with a range of 2–15 individuals [44].

Domestic cats also show the same ability to hunt and are
curious aboutmoving objects [45–47].Watching the cats, you
would think that most of the time is spent resting, even when
awake [48, 49]. In this state of alertness they do not leave; they
may be listening orwithwide eyes looking around [50]. Based
on all these behaviors we formulate BCSO.

Binary Cat Swarm Optimization [14] is an optimization
algorithm that imitates the natural behavior of cats [51, 52].
Cats have curiosity about objects in motion and have a
great hunting ability. It might be thought that cats spend
most of the time resting, but in fact they are constantly
alert and moving slowly. This behavior corresponds to the
seeking mode. Furthermore, when cats detect a prey, they
spend lots of energy because of their fast movements. This
behavior corresponds to the tracing mode. In BCSO, these
two behaviors are modeled mathematically to solve complex
optimization problems.

In BCSO, the first decision is the number of cats needed
for each iteration. Each cat, represented by cat

𝑘
, where 𝑘 ∈

[1, 𝐶], has its own position consisting of 𝑀 dimensions,
which are composed by ones and zeros. Besides, they have
speed for each dimension𝑑, a flag for indicating if the cat is on
seeking mode or tracing mode, and finally a fitness value that
is calculated based on the SCP.The BCSO keeps searching for
the best solution until the end of iterations.

In BCSO the bits of the cat positions are 𝑥
𝑗
= 1 if column

𝑗 is in the solution, 0 otherwise (1). Cat position represents
the solution of the SCP and the constraintmatrix ensures that
each row 𝑖 is covered by at least one column.

Next the BCSO general Algorithm 1 and diagram
(Figure 1) are described where MR is a percentage that
determines the number of cats that undertake the seeking
mode.

3.1. Seeking Mode. This submodel is used to model the
situation of the cat, which is resting, looking around, and
seeking the next position to move to. Seeking mode has
essential factors: PMO (Probability of Mutation Operation);
CDC (Counts of Dimensions to Change) which indicate
how many of the dimensions varied; SMP (Seeking Memory
Pool) which is used to define the size of seeking memory for
each cat. SMP indicates the points explored by the cat; this
parameter can be different for different cats.

Algorithm 1 (BCSO()).

(1) Create 𝐶 cats;
(2) initialize the cat positions randomly with values

between 1 and 0;
(3) initialize velocities and flag of every cat;
(4) set some cats into seekingmode according toMR, and

set the others into tracing mode;
(5) evaluate the cats according to the fitness function;
(6) keep the best cat which has the best fitness value into
𝑏𝑒𝑠𝑡𝑐𝑎𝑡 variable;
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Create C cats

Initialize the position, velocities,
and the flag of every cat

Evaluate the cats according to the fitness function
and keep the position of the cat, which has the beat fitness value

Yes

Yes

No

No

Catk is in the
seeking mode?

Apply catk into
seeking mode process

Apply catk into
tracing mode process

Repick number of cats and set them into tracing
mode according to MR, and set the other into seeking mode

Terminate?

End

Figure 1: Binary Cat Swarm Optimization.

(7) move the cats according to their flags; if cat
𝑘
is in seek-

ing mode, apply the cat to the seeking mode process;
otherwise apply it to the tracing mode process. The
process steps are presented above;

(8) repick number of cats and set them into tracingmode
according to MR; then set the other cats into seeking
mode;

(9) check the termination condition; if satisfied, termi-
nate the program, and otherwise repeat since step (5).

The following pseudocode and diagram (Figure 2)
describe cat behavior seeking mode in which 𝐹𝑆

𝑖
is the

fitness of 𝑖th cat and 𝐹𝑆
𝑏
= 𝐹𝑆max for finding the minimum

solution and 𝐹𝑆
𝑏
= 𝐹𝑆min for finding the maximum solution.

To solve the SCP we use 𝐹𝑆
𝑏
= 𝐹𝑆max.

Step 1. Create SMP copies of cat
𝑘
.

Step 2. Based on CDC, update the position of each copy
randomly according to PMO.

Step 3. Evaluate the fitness of all copies.

Step 4. Calculate the selecting probability of each copy
according to

𝑃
𝑖
=

𝐹𝑆
𝑖
− 𝐹𝑆
𝑏

𝐹𝑆max − 𝐹𝑆min
. (4)

Step 5. Apply roulette wheel to the candidate points and
select one.

Step 6. Replace the current position with the selected candi-
date.

3.2. Tracing Mode. Tracing mode is the submodel for model-
ing the case of the cat in tracing targets. In the tracing mode,
cats are moving towards the best target. Once a cat goes into
tracing mode, it moves according to its own velocities for
each dimension. Every cat has two velocity vectors which are
defined as𝑉1

𝑘𝑑
and𝑉0

𝑘𝑑
.𝑉0
𝑘𝑑

is the probability of the bits of the
cat to change to zero while 𝑉1

𝑘𝑑
is the probability that bits of

cat change to one. The velocity vector changes its meaning
to the probability of mutation in each dimension of a cat.
The tracing mode action is described in the next steps and
diagram (Figure 3).

Step 1. Calculate 𝑑1
𝑘𝑑
and 𝑑0
𝑘𝑑
where𝑋best,𝑑 is the 𝑑 dimension

of best cat, 𝑟1 has random values in the interval of [0, 1], and
𝑐1 is a constant which is defined by the user:

if 𝑋best,𝑑 = 1 then 𝑑1
𝑘𝑑
= 𝑟1𝑐1, 𝑑

0
𝑘𝑑
= − 𝑟1𝑐1,

if 𝑋best,𝑑 = 0 then 𝑑1
𝑘𝑑
= − 𝑟1𝑐1, 𝑑

0
𝑘𝑑
= 𝑟1𝑐1.

(5)

Step 2. Update process of 𝑉1
𝑘𝑑

and 𝑉0
𝑘𝑑

is as follows, where 𝑤
is the inertia weight and𝑀 is the column numbers:

𝑉
1
𝑘𝑑
= 𝑤𝑉

1
𝑘𝑑
+𝑑

1
𝑘𝑑

𝑉
0
𝑘𝑑
= 𝑤𝑉

0
𝑘𝑑
+𝑑

0
𝑘𝑑

𝑑 = 1, . . . ,𝑀.

(6)

Step 3. Calculate the velocity of cat
𝑘
, 𝑉
𝑘𝑑
, according to

𝑉


𝑘𝑑
=
{

{

{

𝑉
1
𝑘𝑑

if 𝑋
𝑘𝑑
= 0

𝑉
0
𝑘𝑑

if 𝑋
𝑘𝑑
= 1.

(7)
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Make SMP
copies of catk

Allow SMP copies to mutate based
on PMO and CDC

Evaluate the fitness of all copies

Calculate the selecting probability
of each candidate point according to

Pi =
FSi − FSb

FSmax − FSmin

Use roulette wheel to pick the point
to move to from the candidate point

Replace the current position
with the selected candidate

Figure 2: Seeking mode.

Step 4. Calculate the probability of mutation in each dimen-
sion; this is defined by parameter 𝑡

𝑘𝑑
; 𝑡
𝑘𝑑

takes a value in the
interval of [0, 1]:

𝑡
𝑘𝑑
=

1
1 + 𝑒−𝑉𝑘𝑑

. (8)

Step 5. Based on the value of 𝑡
𝑘𝑑
, the new value of each

dimension of cat is updated as follows where rand is an
aleatory variable ∈ [0, 1]:

𝑋
𝑘𝑑
=
{

{

{

𝑋best,𝑑 if rand < 𝑡
𝑘𝑑

𝑋
𝑘𝑑

if 𝑡
𝑘𝑑
< rand

𝑑 = 1, . . . ,𝑀. (9)

The maximum velocity vector of 𝑉
𝑘𝑑

should be bounded
to a value 𝑉max. If the value of 𝑉



𝑘𝑑
becomes larger than 𝑉max,

𝑉max should be selected for velocity in the corresponding
dimension.

4. Solving the Set Covering Problem

Next, the Solving SCP pseudocode is described.

Algorithm 2 (𝑠𝑜𝑙V𝑖𝑛𝑔 SCP()).

(1) Initialize parameters in cats;
(2) initialize cat positions: randomly initialize cat posi-

tions with values between 0 and 1;
(3) initialize all parameters of BCSO;
(4) evaluate the fitness of the population. In this case the

fitness function is equal to the objective function of
the SCP;

(5) change the position of the cat. A cat produces a
modification in the position based on one of the
behaviors, that is, seeking mode or tracing mode;

d = 1

Yes Xbest,d
is 1?

is 1?

No

Yes No

Yes

Yes

No

No

d
1
kd = r1c1

d
0
kd = r1c1d

0
kd = −r1c1

d
1
kd = −r1c1

V
1
kd = wV

1
kd + d

1
kd

V
0
kd = wV

0
kd + d

0
kd

V

kd = V

0
kd

Xkd

V

kd = V

1
kd

tkd =
1

1 + e
−V

𝑘𝑑

Xkd = Xkd Xkd = Xbest,d

d = d + 1

d ≤ M

End

Rand < tkd

Figure 3: Tracing mode.

(6) if solution is not feasible then it is repaired. Each row 𝑖
must be covered by at least one column; to choose the
missing columns do the cost of a column/(number of
not covered rows that can cover column 𝑗);

(7) eliminate the redundant columns. A redundant col-
umn is one that if removed the solution remains
feasible;

(8) memorize the best found solution. Increase the num-
ber of iterations;

(9) stop the process and show the result if the completion
criteria aremet. Completion criteria used in this work
are the number specified maximum of iterations.
Otherwise, go to step (3).

5. Results

The BCSO performance was evaluated experimentally using
65 SCP test instances from the OR-Library of Beasley [53].
The optimization algorithm was coded in Java in NetBeans
IDE 7.1 and executed on a computer with 2.53GHz Intel
Core i3M380 CPU and 3.0GB of RAM under Windows 7
Operating System.
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Table 1: Parameter values.

Name Parameter Value
Number of cats 𝐶 30

Mixture ratio MR 0.5

Seeking Memory Pool SMP 20
Probability of Mutation
Operation PMO 1

Counts of Dimensions to Change CDC 0.001

Inertia weight 𝑤 1

Factor 𝑐1 𝑐1 1

Table 2: Computation times of BCSO and ABC.

Instance
set

Number of
instances

Timeavg BCSO
(s)

Timeavg ABC
(s)

4 10 4.5 5.1

5 10 5.6 6.6

6 5 7.0 11.0

A 5 11.7 11.2

B 5 25.8 37.9

C 5 20.0 17.7

D 5 49.4 72.2

NRE 5 71.6 96.6

NRF 5 52.9 314.2

NRG 5 151.8 94.8

NRH 5 213.4 545.7

In all experiments the BCSO was executed with 500
iterations and 30 times each instance. See Table 1 with the
parameters of BCSO.

To select these parameters, the algorithm was executed
10 times, each one for the different population sizes of 1000,
100, 50, and 30 cats, keeping all other parameters constant. As
the population size was decreased, the fitness value converges
towards a minimum. The value of MR was varied while all
other parameters are kept constant.The value 0.5 for MR was
given best solutions. The value of SMP was varied between
1000, 500, 300, 100, and 20. All values gave the same result;
for very large values good results were obtained in many
iterations; small values of SMP to the same results were
obtained in a few iterations.The values of𝑤 and 𝑐1 were tested
with values between 0 and 1, and both showed no influence
on the results; 𝑤 of 1 and 𝑐1 of 1 are the reasonable choice of
parameters.

Tables 3 and 4 show the results of the 65 instances. The
𝑍opt column reports the optimal value or the best known
solution for each instance.The 𝑍min, 𝑍max, and 𝑍avg columns
report the lowest cost, highest cost, and the average of the
best solutions obtained in 30 runs, respectively. The quality
of a solution is evaluated in terms of the percentage deviation
relative (RPD) of the solutions reached 𝑍

𝑏
and 𝑍opt (which

Table 3: Computational results on 65 instances of SCP: part 1.

Instance 𝑍opt 𝑍min 𝑍max 𝑍avg RPDavg RPDmin Time (s)
4.1 429 459 485 479.6 11.8 7.0 4.77
4.2 512 570 599 594.2 16.1 11.3 4.08
4.3 516 590 614 606.8 17.6 14.3 4.36
4.4 494 547 585 578.3 17.1 10.7 4.62
4.5 512 545 558 554.2 8.2 6.4 4.69
4.6 560 637 655 649.9 16.1 13.8 4.56
4.7 430 462 469 467.4 8.7 7.4 4.24
4.8 492 546 571 566.9 15.2 11.0 4.99
4.9 641 711 741 725.0 13.1 10.9 4.64
4.10 514 537 556 552.1 7.4 4.5 4.55
5.1 253 279 283 281.6 11.3 10.3 5.95
5.2 302 339 340 339.9 12.5 12.3 5.36
5.3 226 247 252 250.5 10.8 9.3 5.89
5.4 242 251 254 253.2 4.6 3.7 5.28
5.5 211 230 231 230.4 9.2 9.0 4.90
5.6 213 232 244 242.7 13.9 8.9 5.24
5.7 293 332 343 338.0 15.4 13.3 5.66
5.8 288 320 331 329.9 14.5 11.1 5.82
5.9 279 295 299 298.6 7.0 5.7 6.10
5.10 265 285 288 286.9 8.3 7.5 5.62
6.1 138 151 166 159.9 15.9 9.4 5.83
6.2 146 152 160 157.4 7.8 4.1 5.73
6.3 145 160 166 164.3 13.3 10.3 8.05
6.4 131 138 143 141.7 8.2 5.3 7.60
6.5 161 169 176 172.8 7.3 5.0 7.61
A.1 253 286 287 286.9 13.4 13.0 8.62
A.2 252 274 280 276.3 9.6 8.7 13.42
A.3 232 257 264 263.1 13.4 10.8 12.27
A.4 234 248 252 251.3 7.2 6.0 11.72
A.5 236 244 244 244 3.3 3.0 12.42
B.1 69 79 79 79 14.5 14.5 26.36
B.2 76 86 90 88.5 16.2 13.2 25.91
B.3 80 85 87 85.4 6.5 6.3 24.46
B.4 79 89 89 89 12.7 12.7 27.77
B.5 72 73 73 73 1.5 1.4 24.65
C.1 227 242 243 242.4 6.7 6.6 19.15
C.2 219 240 244 240.8 9.9 9.6 20.83
C.3 243 277 279 278 14.4 14.0 20.38
C.4 219 250 250 250 13.2 12.3 20.16
C.5 215 243 247 244.3 13.6 13.0 19.47
D.1 60 65 66 65.7 9.5 8.3 52.53
D.2 66 70 71 70.1 6.2 6.1 51.36
D.3 72 79 81 80.8 12.2 9.7 49.89
D.4 62 64 67 66.6 7.4 3.2 46.48
D.5 61 65 66 65.6 7.5 6.6 46.61

can be either the optimal or the best known objective value).
RPDmin was evaluated using 𝑍

𝑏
= 𝑍min and RPDavg was
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Table 4: Computational results on 65 instances of SCP: part 2.

Instance 𝑍opt 𝑍min 𝑍max 𝑍avg RPDavg RPDmin Time (s)
NRE.1 29 29 30 29.9 3.1 0.0 65.76
NRE.2 30 34 35 34.2 14.0 13.3 72.45
NRE.3 27 31 32 31.5 16.7 14.8 75.40
NRE.4 28 32 33 32.9 17.5 14.3 71.34
NRE.5 28 30 31 30.3 8.2 7.1 73.01
NRF.1 14 17 18 17.1 22.1 21.4 51.33
NRF.2 15 18 19 18.2 21.3 20.0 52.53
NRF.3 14 17 18 17.2 22.9 21.4 57.10
NRF.4 14 17 18 17.1 22.1 21.4 54.74
NRF.5 13 15 16 15.9 22.3 15.4 48.73
NRG.1 176 190 194 192.7 9.5 8.0 139.46
NRG.2 154 165 167 166 7.8 7.1 149.43
NRG.3 166 187 191 187.7 21.1 20.6 156.04
NRG.4 168 179 185 183.2 9.0 6.5 141.03
NRG.5 168 181 186 184.3 9.7 7.7 172.95
NRH.1 63 70 74 71.2 13.0 11.1 195.67
NRH.2 63 67 67 67 6.3 6.3 207.34
NRH.3 59 68 74 69.6 18.0 15.3 224.36
NRH.4 58 66 68 66.6 14.8 13.8 214.68
NRH.5 55 61 66 61.5 11.8 10.9 226.03

evaluated using 𝑍
𝑏
= 𝑍avg. And finally the time (s) column

reports the average computational time in seconds. Consider

RPD = (
𝑍
𝑏
− 𝑍opt

𝑍opt
) ∗ 100. (10)

Table 2 shows the average computation times of the SCP
instances set. Our proposed algorithm in the most instances
was solved in less time than ABC [54]. The difference of
seconds between BCSO and ABC is as follows: in the NRE
instance there is a difference of 25 seconds, in NRF it is of
261.3 seconds, and in the NRH it is of 332.3. Except for the A,
C, and NRG instances, all other instances were solved in less
time than the ABC. Therefore, the computation time of our
algorithm is much better than the ABC algorithm.

6. Conclusions

In this paper we use a binary version of Cat Swarm Opti-
mization to solve SCP using its column based representation
(binary solutions). In binary discrete optimization problems
the position vector is binary. This causes significant change
in BCSO with respect to CSO with real numbers. In fact in
BCSO in the seeking mode the slight change in the position
takes place by introducing the mutation operation. The
interpretation of velocity vector in tracingmode also changes
to probability of change in each dimension of position of the
cats. The proposed BCSO is implemented and tested using
65 SCP test instances from the OR-Library of Beasley. As
can be seen from the results, metaheuristic performs well
in most of cases. This paper has shown that the BCSO is a

valid alternative to solve the SCP. The algorithm performs
well regardless of the scale of the problem.

We believe that the differences in the computation times
between BCSO and ABC are in our favor; this difference is
very obvious in the big sets; in NRH the difference of seconds
is of 332.3. Table 2 shows that our proposed algorithm is better
than the artificial bee colony algorithm (ABC) with respect to
computation time.

We can see the premature convergence problem, a typical
problem in metaheuristics, which occurs when the cats
quickly attain to dominate the population, constraining it to
converge to a local optimum. For future works the objective
will make them highly immune to be trapped in local optima
and thus less vulnerable to premature convergence problem.
Thus, we could propose an algorithm that shows improved
results in terms of both computational time and quality of
solution.
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