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The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a 𝑛
2
× 𝑛
2 grid,

composed of 𝑛 columns, 𝑛 rows, and 𝑛 subgrids, each one containing distinct integers from 1 to 𝑛
2. Such a puzzle belongs to the NP-

complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we pro-
pose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from
the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of
constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own.This ability clearly alleviates
the work of the tabu search, resulting in a faster andmore robust approach for solving Sudokus.We illustrate interesting experimen-
tal results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

1. Introduction

The Sudoku puzzle is a combinatorial problem consisting of
assigning 𝑛

2 digits, from 1 to 𝑛
2, in each cell matrix of size

𝑛
2
× 𝑛

2. The matrix is composed of 𝑛2 rows, 𝑛2 columns, and
𝑛
2 subgrids of size 𝑛 × 𝑛, as shown in Figure 1.
The problemhas a set of simple rules; in each region every

digit must be assigned only one time, and hence all digits
must be assigned in each cell of each region. Any digit will be
repeated 𝑛

2 times scattered across the grid but not repeated
in same rows, columns, and subgrids. The common size of
Sudoku is 𝑛 = 3; thus the puzzle is defined as a 9 × 9 matrix
with nine 3 × 3 subgrids. Each Sudoku instance starts with
some values, called the givens and the difficulty of the puzzle
depends on the positioning of those givens along the matrix.
An instance has a unique solution if it contains at least 17
givens [1].

During the last years, Sudokus have appeared as interest-
ing problems to test constraint satisfaction and optimization
algorithms because of their NP-completeness and different
modeling capabilities. In this context, several approaches
from different domains have been proposed. For instance,
exact methods such as constraint programming [2, 3] and
SAT [4] are in general efficient techniques to solve Sudokus.
On the approximate methods domain, metaheuristics have
proven to be efficient as well [5, 6]. Some hybrids combining
exact and approximate methods have also been reported
[7, 8], as well as techniques such as Sinkhorn balancing [9],
rewriting rules [10], and entropy minimization [11].

In this work, we introduce a new hybrid that smartly
integrates a global constraint, namely, the alldifferent
constraint, in a classic tabu search procedure. The
alldifferent constraint comes from the constraint
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Figure 1: Sudoku puzzle instance: AI Escargot.

programming world and has specially been designed for
the efficient domain reduction of variables involved in
constraints that must be pairwise different. This global
constraint works perfectly for Sudokus since all the puzzle
constraints can be expressed as a pairwise comparison. We
implement the alldifferent constraint following Puget’s
approach [12], which identifies Hall intervals [13] and then
filters the domains. This allows one to efficiently propagate
the constraints, considerably reducing the search space and
alleviating the work of the tabu search. As a consequence, the
search process is accelerated, while the quality of solutions
is maintained. We illustrate interesting experimental results
where our proposed algorithm outperforms the best results
reported in the literature.

This paper is organized as follows. In Section 2, we
describe the previous work. Section 3 presents the classic
tabu search. The alldifferent constraint is presented in
Section 4. The proposed algorithm is presented in Section 5,
followed by the corresponding experimental results. Finally,
we conclude and give some directions for future work.

2. Related Work

In this paper, we concentrate on incomplete search methods,
specially on solving hard instances of the puzzle. Within this
scenario, different approaches have been suggested, mainly
based on metaheuristics. For instance, in [14], the Sudoku
puzzles aremodeled as a combinatorial optimization problem
where the objective function is the minimization of the
incorrectly placed numbers on the board.Thepreviousmodel
is solved by using simulated annealing, but the approach
is mostly focused on producing valid Sudokus than on the
performance of the resolution. In [15], where a particle
swarm optimizer (PSO) for solving Sudokus is presented,
the goal of authors was to validate the use of geometric
operators for PSO for complex combinatorial spaces. In [5],
a classic genetic algorithm is tuned with similar geometric
operators, particularly Hamming space crossovers and swap
space crossovers, reporting good solutions for a hard Sudoku

instance. In [16], another GA is presented improving the
selection, crossover, and mutation operators. They achieve
a better convergence rate and stability with respect to the
classic GA. In [8], a hybrid combining AC3 and tabu search
is reported, where the idea is to apply AC3 at each iteration of
themetaheuristic in order to systematically attempt to reduce
the variable domains.A similar approachusing cuckoo search
is presented in [7], but the AC3 is only employed as a
preprocessing phase.

In [17], the alldifferent constraint is used to reduce
variable domains by overlapping the 27 Sudoku constraints.
The approach succeeds for easy instances and some other
ones, but in more complex instances the solution is reached
with a complete search solver. In Section 6, a comparison
of the proposed algorithm with respect to the best results
reached by hybrids and approximate methods is given.

3. Tabu Search

Tabu search (TS), introduced by Glover [18, 19], is a meta-
heuristic mainly concerned with combinatorial optimization
problems. TS has successfully been employed for working
on different kind of real-life problems as well as problems
from operation research and computer science, such as the
traveling salesman problem, the knapsack problem, and the
timetabling problem.

TS is based on local search over single solutions, employ-
ing a given solution 𝑆 as a start point. Then, this starting
solution will be improved across small changes, being those
solutions called “neighbors” of 𝑆, iteratively until some
stopping criterion has been reached. The local search moves
from neighbor to neighbor as long as possible according to a
minimization/maximization of a defined objective function.
Normally there exist problemswith somemoves so that 𝑆may
be trapped in local optimum where the local search cannot
find any further neighborhood solution.

To tackle the previous problem, TS makes use of a
memory structure named tabu list, which is a feature that
distinguishes it from other incomplete methods. The aim of
the tabu list is

(i) to evade poor-scoring areas;
(ii) to dodge unpromising areas and return to previously

reached ones.

Hence, in the tabu list some data is kept of the recently
visited solutions, with the aim of avoiding them if these are
bad solutions, and so improving the efficiency of the search
process.The tabu list is considered themost important feature
of TS.

Algorithm 1 describes the classic procedure of TS. As
input, the algorithm receives a primary solution that includes
the givens values and an empty cell in the other positions,
and as output it returns the best solution scored. At line 3,
a while statement manages the iterations of the process until
the defined stop criteria is reached. For instance, the stop
condition is a maximum iteration limit or a threshold on
the evaluation function. In this implementation, we use as
evaluation function the minimization of remaining values to
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Input: 𝑆0
Output: 𝑆

𝑏𝑒𝑠𝑡

(1) 𝑆
𝑏𝑒𝑠𝑡

← 𝑆0
(2) 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← 0

(3) While ¬ Stop Condition do
(4) 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 ← 0

(5) For (𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

∈ 𝑆
𝑏𝑒𝑠𝑡
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑜𝑟ℎ𝑜𝑜𝑑

) do
(6) If ¬ ContainsAnyFeatures(𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡)

(7) push(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡, 𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

)
(8) End If
(9) End For
(10) 𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
← LocateBestCandidate(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡)

(11) If cost(𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

) ≤ cost(𝑆
𝑏𝑒𝑠𝑡

)
(12) 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← FeatureDifferences(𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, 𝑆
𝑏𝑒𝑠𝑡

)
(13) 𝑆

𝑏𝑒𝑠𝑡
← 𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

(14) While 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 > 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡
𝑠𝑖𝑧𝑒

do
(15) ExpireFeature(𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡)
(16) EndWhile
(17) End If
(18) EndWhile
(19) Return 𝑆

𝑏𝑒𝑠𝑡

Algorithm 1: Tabu Search.

complete the puzzle. At line 7, new potential solutions are
created by a neighboring procedure, these solutions are added
to the candidate list exclusively if they do not include new
solution elements on the tabu list. Then, a promising best
candidate is selected on condition which is the best quality
solution according to the evaluation by the cost function.
At line 11, the cost evaluation of the chosen candidate is
compared. If it improves the best solution (𝑆

𝑏𝑒𝑠𝑡
) cost, the

differences of those are added to the tabu list and the 𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

becomes the new 𝑆
𝑏𝑒𝑠𝑡

.
Finally, some features are expired in the tabu list, and

generally in the same order they were included, permitting
in next iterations to add solutions to the candidate list which
contains the expired features.

4. CP Overview and
the alldifferent Constraint

Constraint programming (CP) is a paradigm for solving
combinatorial search and optimization problems mainly
from domains such as scheduling, planning, and vehicle
routing. In CP, a problem is modeled by relating all involved
variables of the problem in constraints terms, and a constraint
solver is employed to solve it.

CP consists in two identifiable stages:
(i) Modeling: stating constraints involving the problem

variables;
(ii) Solving: finding a solution satisfying all the con-

straints.
Hence, all problems are represented in terms of decision

variables and constraints, and the aim of the constraint solver
is to find an assignment to all the variables that satisfies all the
constraints.

4.1. Basic Concepts. AConstraint Satisfaction Problem (CSP)
is defined by:

(i) A finite set of variables,𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑛.
(ii) A domain for each variable, 𝐷(𝑋) =

𝐷(𝑥1), 𝐷(𝑥2), . . . , 𝐷(𝑥
𝑛
), also noted as 𝑑1, 𝑑2, . . . , 𝑑𝑛,

where 𝑑
𝑖
is the domain of 𝑥

𝑖
.

(iii) A finite set of constraints 𝐶(𝑋), where 𝑐(𝑥1, . . . , 𝑥𝑛)
denotes a constraint involving variables 𝑥1, . . . , 𝑥𝑛.

A CSP is denoted by the tuple 𝑃⟨𝑋,𝐷, 𝐶⟩. A CSP has
solution only if every constraint in 𝐶 is satisfied, and it is
called a consistent CSP; further if no solution exists, it is an
inconsistent CSP. Algorithms based on backtracking such as
the forward checking are in general employed to solve CSPs.
[20].

4.2. alldifferent Constraint. The alldifferent con-
straint commonly appears in problems which are based on
permutations or when disjoint paths need to cover a directed
graph [21–23], among other problems that involve constraints
of pairwise difference. The main ability of this constraint
is that it exploits the global information of the problem
constraint, instead of handling each pairwise constraint
independently. Exploiting the whole information leads to a
more efficient domain filtering as explained in [24]. In the
following, we provide some necessary definitions.

Definition 1. A 𝑘-ary constraint connecting variables in 𝑋

with domains 𝐷(𝑋) is defined as a subset of the cartesian
product ∀𝑑 ∈ 𝐷(𝑋) and it is intended as the set of allowed
𝑘-tuples for these 𝑘 variables.

A constraint that involves one variable (e.g., 1-ary: 𝑥1 =

8) is called unary constraint and a binary one (e.g., 2-ary:
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𝑥1 ̸= 𝑥2) involves 2 variables, and so on. In general, a 𝑘-
ary constraint has a scope of size 𝑘. A conjunction of several
simpler constraints is called a global constraint providing a
more simple model for a problem; one of these constraints is
the well-known alldifferent constraint.

The alldifferent constraint is a constraint of differ-
ence between all variables involved in the variable relation
and specified that the value assigned to the variables must be
pairwise different.

Definition 2. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be variables with respective
finite domains𝐷(𝑥1), 𝐷(𝑥2), . . . , 𝐷(𝑥

𝑛
), then

alldifferent (𝑥1, . . . , 𝑥𝑛)

= {(𝑑1, . . . , 𝑑𝑛) | ∀
𝑖
𝑑
𝑖
∈𝐷 (𝑥

𝑖
) , ∀
𝑖 ̸=𝑗

𝑑
𝑖

̸= 𝑑
𝑗
} .

(1)

Since the introduction of the alldifferent constraint
[25], several filtering algorithms have been developed [24],
depending on the desired degree of local consistency from
“weaker” local consistency with low degree of filtering but
short-time to “stronger” with an efficient filtering in a longer
runtime. In this work, we employ the alldifferent con-
straint based on bounds consistency [12] and Hall’s marriage
theorem [13]. This implementation provides stronger propa-
gation behavior, checking for exhaustion of all subranges of
possible values [24].

Definition 3 (bounds consistency). Let 𝑐 be a constraint
𝑐(𝑥1, 𝑥2, . . . , 𝑥𝑛) with 𝑛 > 1; a CSP is bounds consistent
if for all variables and each value 𝑑

𝑖
from its domain,

𝑑
𝑖

∈ {min𝐷(𝑥
𝑖
),max𝐷(𝑥

𝑖
)}, there exist values 𝑑

𝑗
∈

[min𝐷(𝑥
𝑗
),max𝐷(𝑥

𝑗
)] for all 𝑗 ∈ {1, . . . , 𝑛} − 𝑖 such that

(𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ 𝐶. min𝐷 and max𝐷 represent the mini-
mum and maximum value, respectively, from the domain𝐷.

Definition 4 (Hall’s theorem). Let 𝑋 be a set of variables
and 𝐷 the corresponding finite variable domains. Suppose
𝐺 is a bipartite graph with bipartition (𝑋,𝐷). There exists a
matching that covers 𝑋 if and only if for every subset 𝐼 ⊆ 𝐷,
|𝐷(𝐼)| ≤ |𝐼| is fulfilled. Then 𝐼 is called a Hall interval if
|𝐼| = |𝐾

𝐼
| with 𝐾

𝐼
= {𝑥
𝑖
| 𝐷
𝑖
⊆ 𝐼}.

Theorem 5. The constraint alldifferent(𝑥1, . . . , 𝑥𝑛) is
bounds consistent if and only if {𝑑

𝑖
≥ 1 | ∀𝑑

𝑖
∈ 𝐷} and

(i) for each interval 𝐼: |𝐼| ≥ |𝐾
𝐼
|,

(ii) for eachHall interval 𝐼 : {min𝐷
𝑖
,max𝐷

𝑖
}∩𝐼 = 0; ∀𝑥

𝑖
∉

𝐾
𝐼
.

Proof. We proceed by induction, observing that the case
|𝐼| = 1 obviously holds, because all domains are
greater than 1. Let I be a Hall interval and 𝑥

𝑖
∉ 𝐾
𝐼
.

If alldifferent(𝑥1, 𝑥2, . . . , 𝑥𝑛) is bounds consistent, it has
a solution when 𝑥

𝑖
= min𝐷

𝑖
, by Definition 3.

Example 6. Consider the following CSP which is represented
in Figure 2:

𝑥1 ∈ {1, 2} ,

𝑥2 ∈ {1, 2} ,

𝑥3 ∈ {1, 2, 3} ,

𝑥4 ∈ {1, 2, 4}

alldifferent (𝑥1, 𝑥2, 𝑥3, 𝑥4) .

(2)

In order to make bounds consistency of the CSP, the
inconsistent values must be removed. The algorithm founds
Hall intervals, in this case when the interval is set to {1, 2}.
Since |𝐼| = 2 and to satisfy the theorem, 𝐼 : {min𝐷

𝑖
,max𝐷

𝑖
}∩

𝐼 = 0, the interval must be removed from 𝑥3 and 𝑥4 domains.

The new domains for all variables will be

𝑥1 ∈ {1, 2} ,

𝑥2 ∈ {1, 2} ,

𝑥3 ∈ {3} ,

𝑥4 ∈ {4} .

(3)

In summary, there exists a solution to an alldifferent
constraint if and only if for each subset of variables, the union
of their domains holds the adequate values to match every
one of them with a distinct value. In the previous example,
when the Hall interval is set to 𝐼 = {1, 2}, being represented
by green and red lines, we note that the values from 𝑥1 and 𝑥2
domains cannot be assigned to any other variable. Hence, the
values of the interval 𝐼 are removed from 𝑥3 and 𝑥4 variables.
The reduced domains are only sets with feasible values with
respect to all constraints.

Example 7. We illustrate with another example apply-
ing the alldifferent constraint on the most difficult
Sudoku instance, and it is called AI Escargot ([28]). Each
Sudoku instance is composed of three types of con-
straints: row, columns, and subgrid. We begin by enforcing
the alldifferent constraint on the rows of the Sudoku
puzzle. We have used just 3 constraints corresponding to
the first three Sudoku rows (enclosed with dashed lines
in Figure 3) instead of the nine ones in order to simplify
the illustration, but the filtering technique is applied to all
constraints.

After applying the alldifferent constraint from the
first to third rows, the domains are only reduced but no
value is discovered due the difficulty of the instance. The
values deleted from the reduced domains did not satisfy the
constraint; they have been already taken for another cell on
the same row.

In Figure 4, the alldifferent constraint is applied to
columns of the puzzle. Only the first three columns are
shown.

In Figure 5, the alldifferent constraint is applied
to the subgrids of the puzzle; the reduced domains by
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Input:𝐷,𝐶

Output: 𝑆
𝑏𝑒𝑠𝑡

(1) 𝑆
𝑏𝑒𝑠𝑡

, 𝐷 ← alldifferent(𝐷,𝐶)
(2) tabuList← 0

(3) While ¬ Stop Condition do
(4) CandidateList← 0

(5) While Len(CandidateList) ≤ 𝐿𝑒𝑛𝑔𝑡ℎ
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡

do
(6) push(CandidateList, CandidateGenerator(𝑆

𝑏𝑒𝑠𝑡
,𝐷))

(7) EndWhile
(8) 𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
← LocateBestCandidate(CandidateList)

(9) 𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

, 𝐷 ← alldifferent(𝐷
𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

, 𝐶)
(10) If cost(𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
) ≤ cost(𝑆

𝑏𝑒𝑠𝑡
)

(11) 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← FeatureDifferences(𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

, 𝑆
𝑏𝑒𝑠𝑡

)
(12) 𝑆

𝑏𝑒𝑠𝑡
← 𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

(13) While 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 > 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡
𝑠𝑖𝑧𝑒

do
(14) ExpireFeature(𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡)
(15) EndWhile
(16) End If
(17) EndWhile
(18) Return 𝑆

𝑏𝑒𝑠𝑡

Algorithm 2: Hybrid alldifferent-Tabu search.

Initial domain
x1 x2 x3 x4

x1 x2 x3 x4

1 2 3 4

1 2 3 4

x1 x2 x3 x4

1 2 3 4

Hall interval: {1, 2} Reduced domain

alldierent constraint

Figure 2: Example of alldifferent constraint through Hall’s
theorem approach.

the previous domain filterings are used. At this point, the
overall domain size of the subgrid has been reduced from 57
elements to 20, being more than 64% of domain reduction,
significantly decreasing the amount of possible assignments.

5. Proposed Algorithm

The main idea of the proposed algorithm (Algorithm 2)
is to employ the alldifferent constraint so as to filter
the concerned variable domains as a preprocessing phase
(line 1) and at every iteration of the Tabu search (line 9).
The alldifferent constraint is applied iteratively over all
structures of the grid (rows, columns, and subgrids). In the
preprocessing phase and within each iteration some values
are deleted from unfeasible regions, easing the work of the
search process of the metaheuristic.

Table 1: Difficulty of tested instances.

Authors Difficulty groups
Easy Medium Difficult Most difficult

[26]
1, 2 3, 4, 5 — —
E C, D SD —

[27] Easy Medium Hard —
[28] — — — AI Escargot

At line 6, we have limited the search neighboring
procedure to assignments from the filtered domain. The
randomization is still used, but just for randomizing the value
selection of filtered values.

As stop condition (line 3), we use the full coverage of the
grid, and it means that solution is found and a maximum of
iterations which has been fixed to 10,000.

As output, the procedure returns 𝑆
𝑏𝑒𝑠𝑡

, which is the
outstanding solution achieved by the algorithm.

6. Experimental Results

In this section, we present a performance evaluation of the
proposed algorithm to solve Sudokus.The tested benchmarks
are classified in diverse kinds of complexity, including the AI
Escargot which is considered the most difficult instance [28].
A useful difficulty classification including easy, medium, and
hard Sudoku instances has been proposed in [26]. Here, we
extend this classification in order to incorporate additional
instances reported in the literature [29, 30]. The reclassifica-
tion is depicted in Table 1. All difficulty classification groups
have 3 instances (a, b, and c) per subgroup, except for the AI
Escargot which is a single instance. All instances have unique
solution.



6 Computational Intelligence and Neuroscience

1 1 1 1 1111 1 1 1 1 1 1 1 11 1
1 3

14

1

1

1

2

2 2 2222 2 2 2 2 2 2 2 2 2 2 2 2

2

2

333 3 33 33 3 3 3 3 3 3 3 3 3 3

3

3

3

3

5 5 5 5 5 5 555 5 5 5 5 5 5 5 5 5

5
5

6 6 6 6 6 6 66 66 6 6 6 6 6 6 6 6

6

6 5

6 4

4 4 4 4 4 444 4 4 4 4 4 4 444 4

7 7 7 7 7 777 7 7 7 7 7 7 7 77 7

7

7

7
7

8

8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8

8

9 9 9 9 9 999 9 9 9 9 9 9 9 99 9

9

9

9

9

9

Figure 3: alldifferent constraint applied to the rows of AI Escargot instance. Only the first three rows are shown.
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Firstly, we have compared the filtering technique used
in previous work [7, 8]. As mentioned before, this phase
is very important and useful to reduce the search space,
consequently facilitating themetaheuristicwork.Thefiltering
technique employed was arc consistency-3 (AC-3) [31]. AC-
3 examines the arcs between pairs of variables and removes
those values from the domains which are not consistent with
the involved constraints. If a domain of a variable changes,
the involved arcs of the variable, which its domain has
been recently reduced, are examined again to check the arc
consistency of the reduced domain.

Table 2 illustrates the percentage of domain reduction
for each Sudoku instance. The results exhibit the fact that
the alldifferent constraint outperforms the AC-3 algo-
rithm in terms of filtering capabilities. This is produced due
to the ability of the alldifferent constraint to employ
the global information of the pairwise constraints instead

of handling the constraints independently as the AC3 does.
Let us note that the ability to infer a greater number
of elements which do not belong to the domain of the
problem solution depends only on the problem constraints.
The alldifferent constraint and the characteristics of the
problem, |𝑋| = 𝑛, enable the use of Hall’s theorem to infer
the reduction of domains until each domain variable has one
element (in the best case) by eliminating the elements of
the domains in which they never be part of any (the only)
solution.

Table 3 depicts the required runs to successfully solve 30
times each Sudoku instance considering 10,000 iterations as
limit. The symbol ↑ 50 indicates that more than 50 runs
are needed to successfully solve 30 times the instance. We
contrast the proposed approach with the best performing
algorithms reported in the literature (AC3-TS [8], AC3-CS
[7], and GA [26, 29]). The results for easy instances show
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Table 2: Comparison of effectiveness by filtering techniques.

Difficulty group Difficulty subgroup
% Domain reduction % Domain reduction

alldifferent AC-3
𝑎 𝑏 𝑐 𝑎 𝑏 𝑐

Easy

1 100% 100% 100% 100% 100% 100%
2 100% 100% 100% 79% 100% 100%
E 100% 100% 100% 100% 100% 100%

Easy 100% 100% 100% 100% 100% 100%

Medium

3 100% 100% 89% 92% 74% 82%
4 86% 100% 82% 75% 75% 76%
5 87% 100% 80% 73% 74% 79%
C 100% 100% 100% 88% 100% 100%
D 75% 100% 100% 68% 73% 77%

Medium 100% 100% 100% 81% 78% 76%

Difficult SD 80% 80% 84% 69% 68% 68%
Hard 68% 87% 100% 66% 74% 68%

Most difficult AI Escargot 71% 70%

no relevant differences. However, for medium, SD, and hard
instances, the performance of the proposed alldiff-TS is
greatly better.

Table 4 contrasts the proposed approach with AC3-TS,
which is the best performing one from previously reported
approaches. We compare the minimum, average, and max-
imum iterations needed to successfully solve each Sudoku

instance. We consider 30 runs for each instance. The results
exhibit the fact that alldiff-TS achieves the constraint
satisfaction of all tested instances requiring considerable less
iterations than AC3-TS (A graphical comparison can be seen
in Figures 6, 7, and 8). Let us remark that TS has a high
participation in the search process and the work is not only
done by the filtering technique.
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Table 3: Solving Sudokus considering 10,000 iterations as maximum.

Difficulty group Difficulty subgroup
Tries Tries Tries Tries

alldiff-TS AC3-TS AC3-CS GA
𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐

Easy

1 30 30 30 30 30 30 30 30 30 — — —
2 30 30 30 30 30 30 ↑ 50 30 30 — — —
E 30 30 30 30 30 30 30 30 30 — — —

Easy 30 30 30 30 30 30 30 30 30 30 30 30

Medium

3 30 30 30 30 30 30 48 ↑ 50 ↑ 50 — — —
4 30 30 30 30 30 30 ↑ 50 ↑ 50 ↑ 50 — — —
5 30 30 30 30 30 30 ↑ 50 ↑ 50 ↑ 50 — — —
C 30 30 30 30 30 30 — — — — — —
D 30 30 30 41 30 30 — — — — — —

Medium 30 30 30 30 30 30 ↑ 50 ↑ 50 ↑ 50 22 — —

Difficult SD 30 30 30 30 30 ↑ 50 — — — — — —
Hard 30 30 30 30 30 46 ↑ 50 ↑ 50 — 2 — —

Most difficult AI Escargot 30 30 — —

Table 4: Iterations needed (minimum, average, maximum, and standard deviation) considering 30 runs.

Difficulty
group Difficulty subgroup

Iterations
alldiff-TS AC3-TS

Minimum Average Maximum 𝜎 Minimum Average Maximum 𝜎

Easy

1 1 1 1 0 1 1 1 0
2 1 1 1 0 1 7.4 58 11.7
E 1 1 1 0 1 1 1 0

Easy 1 1 1 0 1 1 1 0

Medium

3 1 2.0 7 1.6 3 90.2 897 140.5
4 1 13.1 95 23.5 2 163.3 1,318 226.3
5 1 20 276 45.0 5 143.9 1,778 230.4
C 1 1 1 0 1 4.0 29 6.0
D 1 27.2 424 64.5 5 1,897.6 9,088 2,214.3

Medium 1 1 1 0 5 138.8 865 173.9

Difficult SD 3 51.5 298 68.8 10 5,005.6 29,329 7,358.1
Hard 1 195.0 1881 397.0 4 1,872.4 7,590 2,217.6

Most
difficult AI Escargot 52 1,248.3 6,328 1,378.6 57 2,566.7 7,224 2,076.6

7. Conclusion and Future Work

In this paper, we have presented a new hybrid that inte-
grates the powerful alldifferent constraint into a classic
tabu search algorithm. The alldifferent constraint is
employed to efficiently delete the values from domains that
do not conduct to any feasible solution. The role of this filter
is to act prior to the TS procedure but also in the search cycle,
which permits progressive filtering of the best solutions.
This allows us to relieve the work of the metaheuristic in
order to achieve faster solving processes. We have carried
out a set of experiments in order to contrast our approach
with the best performing approximate methods and hybrids

reported in the literature. We have considered different
complexity instance Sudokus, including the AI Escargot
which is considered the most difficult one. The result has
exhibited encouraging results, where the proposed approach
noticeably outperforms the previous algorithms reported in
the literature.

A clear direction for future work is to study the
integration of the alldifferent constraint on additional
metaheuristics and to contrast performance. Particularly,
the addition of global constraints on a cuckoo search
[32] algorithm would be a promising hybrid, given the
fact that CS algorithm has exhibited great performance
and has already been combined with filtering techniques.
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solving.

Another interesting research direction will be the study of
variations of the classic alldifferent constraint working
in conjunction with approximate methods. An example is
the symm alldifferent constraint [24], which will be
useful in the resolution of the well-known round-robin
tournament.
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