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Abstract: Angiogenesis is a key process by which new capillary blood vessels are formed, sustaining the supply of oxy-
gen and other nutrients to the body allowing its growth and wound healing, among others. However, angiogenesis also as-
sociates with pathological processes, such us tumor growth. Vascular endothelial cells produce different matrix remodel-
ing enzymes such as matrix metalloproteinases and a-disintegrin and metalloproteinases, which have both positive and 
negative effects on angiogenesis, regulating the cell environment and signaling. However, little is known about the regula-
tion of the activity of these proteases during vascular development. Reversion-inducing cysteine-rich protein with Kazal 
motifs (RECK) is a membrane-anchored inhibitor of different matrix metalloproteinases and a-disintegrin and metallopro-
teinases, being a critical regulator of extracellular matrix remodeling and signaling pathway, particularly Notch, which is 
critical for the maturation of the growing vessels. Reck knockout mice die in utero showing vascular developmental de-
fects and massive hemorrhages. These defects were not observed in knockout mice for secreted-soluble matrix metallo-
proteinase inhibitors pointing to an exclusive role of RECK in vascular development and maturation since its location at 
the plasma membrane. Despite the above, the exact role of RECK in this process has not been clarified. This review is fo-
cused to summarize the available information on the role of RECK as membrane anchored matrix metalloproteinases and 
a-disintegrin and metalloproteinases inhibitor, proposing a hypothesis by which RECK play key roles in the physiology 
and pathophysiology of the angiogenesis processes.
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INTRODUCTION 

 Angiogenesis is the process by which new capillary 
blood vessels growth leading to, for example, vascularization 
of the placenta during implantation [1], embryonic develop-
ment, organs growth and wound healing [2-4]. However, 
angiogenesis also associates with pathological processes 
including tumor angiogenesis, pregnancy diseases, cardio-
vascular disease and age-related blindness [5-10]. Angio-
genesis regards with generation of a new vessel from an ex-
isting one, while vasculogenesis is the novo formation of a 
vessel from mesoderm derived endothelial precursor cells 
[11, 12]. Thus, angiogenesis expand and remodel an existing 

*Address correspondence to these author at the Cellular and Molecular 
Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, 
School of Medicine, Faculty of Medicine, Pontificia Universidad Católica 
de Chile, P.O. Box 114-D, Santiago 8330024, Chile;  
Tel: +562-23548117; Fax: +562-26321924;  
E-mails: jaime.gutierrez@uss.cl, sobrevia@med.puc.cl 

vascular network promoting its maturation and tissue irriga-
tion [11, 12]. This remodeling process comprises two differ-
ent mechanisms, i.e., sprouting [13] and intussusceptive an-
giogenesis [14]. The sprouting angiogenesis is based on acti-
vation of quiescent or resting vascular endothelial cells. The 
endothelial cells migrate from the vessels, proliferate and 
form the tube-like structure leading to formation of a new 
vessel in response to proangiogenic signals. This phenome-
non is involved in almost every vascularization process oc-
curring in normal or disease tissues [13, 15]. Intussusceptive 
angiogenesis involves less cell proliferation and corresponds 
to a division of existing vessels leading to extension of the 
vessel wall into the lumen to split a single vessel into two 
new ones. This phenomenon is mainly associated to the for-
mation of hierarchically branched structure in rapidly form-
ing organs, leading to reorganization of existing cells and 
allowing a rapid increase of the capillary number without 
demanding new endothelial cells [14]. Both in sprouting and 
intussuseptive angiogenesis a final remodeling and adjust-
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ment step is required. This comprises a regression or pruning 
to eliminate excess of vessels and recruitment of pericytes 
and smooth muscle cells [2]. The latter allows the formation 
of a new basal membrane surrounding the newly generated 
vessel [13, 14]. In addition, recruitment of these cell types 
leads to the generation of survival signals maintaining the 
homeostasis and quiescence of endothelial cells [13, 14, 16].  
 Reversion-inducing cysteine-rich protein with Kazal mo-
tifs (RECK) is a membrane-anchored inhibitor of different 
matrix metalloproteinase (MMPs) and is conceived as a 
critical regulator of the extracellular matrix (ECM) remodel-
ing process [17, 18]. Reck knockout mice exhibit vascular 
developmental defects and massive hemorrhages [18, 19]. 
These vascular defects are not seen in knockout mice for 
secreted-soluble MMP inhibitors (TIMPs) [18, 20-22], point-
ing out to a critical, and perhaps exclusive role of RECK in 
vascular development and maturation. Vascular endothelial 
cells synthesize different MMPs with pro- and anti-
angiogenesis effects [15, 23-25]. However, little is known 
about the regulation of the activity of these proteases during 
vascular development.  
 In this review we focused on the role of RECK as a po-
tential membrane anchored MMP inhibitor in the physiologi-
cal and pathological angiogenesis processes. We propose 
RECK as a key regulator of the endothelial cell behavior in 
angiogenesis, highlighting the possibility that RECK could 
be a potential target for therapeutic angiogenesis. 

MATRIX METALLOPROTEINASES AND ITS 
REGULATION 

 MMPs are zinc/calcium-dependent endopeptidases associ-
ated with different processes requiring modification of the 
extracellular matrix in different biological processes, including 
angiogenesis, tissue remodeling, embryonic development, cell 
migration and morphogenesis [26, 27]. MMPs are either se-
creted to the extracellular medium as soluble MMPs (MMPs 1 
to 13 and MMPs 18 to 20) or integrated into the plasma mem-
brane by a transmembrane domain (MMPs 14 to 17). All 
MMPs catalyze the proteolytic degradation of specific ele-
ments of the extracellular matrix [28-30]. The MMPs-
dependent extracellular matrix degradation is controlled at 
different levels, including (1) transcriptional level, where sev-
eral external stimuli, including cytokines, growth factors and 
changes in cell-cell and cell-extracellular matrix interactions, 
regulate the expression and secretion of a variety of MMPs 
[31, 32], (2) the proteolytic activation of the zymogen, that is, 
the process by which the inactive MMPs, produced as zy-
mogens are extracellularly activated by other proteinases by 
removing pro-peptides, leaving them in a full active state [21, 
33, 34], and (3) inhibition of the active enzyme, where the 
catalytic activity of MMPs is under the control of specific 
MMPs inhibitors, known as tissue inhibitor of metalloprotein-
ases (or TIMPs) and RECK [18]. Lack of the regulation of the 
expression, secretion or activation of MMPs associates with 
several pathological processes such as inflammation, cell in-
vasion, renal disease, tumoral progression, metastasis, and cell 
death [35-37]. Consequently, a better understanding on how 
MMPs function is regulated is a critical step for a better char-
acterization of the genesis of several pathological processes 
including abnormal angiogenesis.  

Fig. (1). RECK as modulator of Notch signaling through 
ADAM-10 and ADAM-17. 
The Notch signal-sending cell express Notch ligand, which is avail-
able for the Notch receptor at the Notch signal-receiving cell (see step 
1). Notch ligand binds to Notch receptor, which then suffers a con-
formational change leading to the exposure of a region of the ex-
tracellular domain that is prone to be cleavaged by ADAM-10 prote-
ase (see step 2). This initial cleavage of Notch-bound Notch receptor 
is followed by subsequent proteolytic cleavages of this protein within 
the plasma membrane-spanning region by a �-secretase (see step 3). 
This phenomenon triggers the Notch signaling through the release of 
the Notch intracellular domain (NICD), which translocates to the 
nucleus to regulate the expression of target genes. RECK could nega-
tively regulates the activity of ADAM-10 and ADAM-17 in the 
Notch signal-receiving cell by inhibiting the first Notch cleavage by 
ADAM-10 (step 2) leading to subsequent reduced Notch-dependent 
signaling (see step 4). By the contrary, RECK expressed in the Notch 
signal-sending cell protects Notch ligands from ADAM-10 and 
ADAM-17 protease activity, thus potentiating Notch signaling (see 
step 5). From data in [38, 39, 79, 80]. 

RECK AS MODULATOR OF MMPs 

 RECK is a glycosyl-phosphatidylinositol (GPI)-anchored 
glycoprotein of 971 amino acids acting as a membrane-
anchored inhibitor of MMP-14 (also addressed as MT1-
MMP), MMP-2, and MMP-9 expression and activation [18]. 
RECK is also involved in the regulation of Notch signaling 
through the modulation of the activity of the a-disintegrin and 
metalloproteinase-10 (ADAM-10) and -17 (ADAM-17) [38, 
39]. Fig. (1) shows a summary of the role of RECK as regula-



108    Current Vascular Pharmacology, 2016, Vol. 14, No. 1 Gutiérrez et al. 

tor of Notch signaling through modulation of ADAM-10 and 
ADAM-17. RECK was initially identified as a transformation 
suppressor protein [17, 40, 41]. RECK gene is highly con-
served with 93% identity for both human and mouse at cDNA 
level [42]. Structurally, the protein is cysteine-rich (9%) and 
includes hydrophobic regions in the NH2- and COOH-terminal 
domains. The NH2-terminal operates as a signal peptide, while 
the COOH-terminal acts as a signal for GPI anchoring. RECK 
contains three serine protease inhibitor-like (SPI) domains 
with the first one corresponding to the Kazal motif [42]. These 
SPI domains are reported to inhibit the protease activity and 

probably play crucial roles in the inhibition of MMPs [43]. 
RECK also contains two epidermal growth factor-like repeats, 
which are essentials for a proper interaction between RECK 
and MMP9 or MMP2 [43]. 

 RECK is expressed in normal tissues in humans [44]. 
RECK expression is under regulation by oncogenes, miR-
NAs, farnesoid X receptor (FXR), myogenic regulatory fac-
tors (MyoD and MRF4), interleukin-6 (IL-6), angiotensin II 
(AngII), transforming growth factor � (TGF�) and Notch 
pathway (Table 1). MMPs activity can induce or enhance 

Table 1. Regulation of RECK expression. 

Regulator Cell or tissue Mechanism Ref 

RAS, v-FOS, c-MYC,
v-SRC, v-FMS,  
v-FES, v-MOS 

Mouse fibroblast cell line (NIH 3T3) Suppression of RECK promoter [42, 119] 

miR-15a Human neuroblastoma cell lines (GI-LA-N, SK-N-SH, IMR-32 and CLB-P)  mRNA destabilization [120] 

miR-15b 

Human fibroblasts (MRC-5), lung adenocarcinoma (A549), mammary adeno-
carcinoma (MCF-7, MDA-MB-231 and MDA-MB-468), colon adenocarci-
noma (SW480 and SW620), fibrosarcoma (HT1080), malignant melanoma 

(A375) and pancreatic carcinoma (Panc-1) cell lines 

mRNA destabilization [86] 

miR-21 

Human fibroblasts (MRC-5), human lung adenocarcinoma (A549), human 
mammary adenocarcinoma (MCF-7, MDA-MB-231 and MDA-MB-468), hu-
man colon adenocarcinoma (SW480 and SW620), fibrosarcoma (HT1080), 
malignant melanoma (A375) and pancreatic carcinoma (Panc-1) cell lines; 

human glioblastoma tissue; human gastric cancer tissue and cell lines (AGS, 
SGC7901, MKN45 and MKN28); human osteosarcoma tissue 

mRNA destabilization 
[86, 121-

123] 

miR-25 Human gastric cancer tissue and cell lines (SGC7901, MKN28 and MKN45) mRNA destabilization [124] 

miR-92a Human non-small cell lung cancer cell lines (H460, H1299 and H358) mRNA destabilization [125] 

miR-92b 
Human non-small cell lung cancer tissue and cell lines (A549, SPC-A1, H1299 

and H1650) 
mRNA destabilization [126] 

miR-96 Human non-small cell lung cancer tissue (A549, SK-MES-1 and H1299) mRNA destabilization [127] 

miR-135b Human hepatocellular carcinoma tissue mRNA destabilization [128] 

miR-182-5p 
Human prostate cancer tissues and cell lines (LNCaP, PC-3 and DU145); hu-

man bladder cancer tissue 
mRNA destabilization [129, 130]

miR-182-5p Human breast tumor tissues and cell lines (MCF-7, MDA-MB-231 and SKBR3) mRNA destabilization [131] 

miR-221 Human colorectal cancer cell lines (SW620 and LoVo) mRNA destabilization [132] 

miR-372, miR-373 Colon adenocarcinoma cell lines (SW480 and SW620) mRNA destabilization [86] 

miR-374b-5p Human gastric cancer cell line (MGC-803) mRNA destabilization [133] 

Notch pathway Drosophila melanogaster adult muscle progenitors (AMPs) cells Upregulated gene expression [134] 

TGF-�  Human non-tumorigenic epithelial cell line (MCF10A) Upregulated gene expression [135] 

Angiotensin II  Mouse cardiac fibroblasts (primary culture) Downregulated gene expression [136] 

FXR Mouse liver tissue Upregulated gene expression [137] 

Interleukin-6  Human gastric cancer cell lines (SGC7901 and MGC803) Downregulated gene expression [138] 

MRF4 Mouse embryo fibroblasts (primary culture) Upregulated gene expression [139] 

MyoD Mouse embryo fibroblasts (primary culture) Downregulated gene expression [139] 

RAS, Rat Sarcoma; v-FOS, Viral Feline Osteosarcoma Oncogene; cMYC, Myelocytomatosis Oncogene; v-SRC, Rous Sarcoma Oncogene; c-FMS, McDonough Feline Sarcoma 
Oncogene; v-FES, Feline Sarcoma Oncogene; v-MOS, Viral Murine Osteosarcoma Oncogene; RECK, Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs; TGF-�, Tumor 
Growth Factor �; FXR, Farnesoid X Receptor; MRF4, Myogenic Factor 6; MyoD, Myogenic Differentiation Factor. 
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tumor survival, invasion and metastasis, through mecha-
nisms involving proteolytic breakdown of tissue barriers to 
facilitate cellular invasion. The main RECK targets, MMP2, 
MMP9 and MMP14 exhibit important roles in this process 
[35] and low expression of RECK associates with different 
types of cancer [43-48]. In this regard, it has been reported 
that restoration of RECK expression results in diminishing 
the mobilization and metastasis of tumor cells [46-48]. Reck
knock out mice show smaller body size and massive hemor-
rhage compared with wild type mice. Since Reck knock out 
mutant embryos show unstructured mesenchymal tissues 
with almost absent collagen arrays and abnormal organo-
genesis, a role for Reck as a regulator of MMPs-dependent 
extracellular matrix remodeling in mammalian development 
is likely [18, 49]. 

RECK AND ANGIOGENESIS 

 The role of RECK in angiogenesis was first suggested by 
studies performing histological examination of Reck-/- mouse 
embryos, which exhibit several embryonic vascular defects 
[18]. RECK is expressed in human umbilical vein endothelial 
cells (HUVECs) and a defective expression of RECK causes 
altered vascular tube formation and cell senescence in this 
cell type [50]. RECK is also expressed in vascular associated 
cells, such as vascular smooth muscle cells (vSMC), peri-
cytes and surrounding stromal cells [18, 19, 50], but the role 
of RECK in these cells has not been addressed [19, 51]. 
RECK expression is found to be reduced in several tumor 
types resulting in increased tumor growth, enhanced tumor 
vascularization and metastasis [43, 44, 48, 52, 53]. On the 
contrary, RECK overexpression reduces branching of tumor 
vessels and increases vessel size leading to insufficient blood 
supply to tumor cells [18, 42, 54, 55]. These results suggest 
that RECK is required for physiological angiogenesis in the 
embryo development; however, RECK overexpression re-
presses tumor vascularization. RECK expression is induced 
in HUVECs co-cultured with hypervascular tumor-derived 
cells [50]. Thus, RECK expression seems to be required in 
endothelial cells, but not in tumor or stromal cells, to pro-
mote tumor angiogenesis. The latter is supported by studies 
showing that RECK deletion in tumor-associated endothelial 
cells causes reduction of tumor growth due to poor vascu-
larization [50, 56, 57]. 

 RECK promotes the formation of the vascular network 
during human placenta development [19, 51]. Downregula-
tion of Reck expression in the implantation chamber results 
in defects in the formation and organization of new blood 
vessels in the developing mice placenta [19]. These altera-
tions were similar to those in the vasculature of Reck-/- mice 
embryos [18, 19]. The vascular network formation was 
found arrested at the stage of primary capillary plexus, indi-
cating that angiogenesis rather than vasculogenesis is altered 
[18, 19]. Some studies have shown that RECK is required at 
later stages of development, where sprouting angiogenesis is 
prominent [19, 58]. As a working hypothesis we speculate on 
the likely cell and molecular events associated with sprout-
ing angiogenesis (Fig. 2), highlighting the potential proc-
esses that may involve RECK in this phenomenon. 

RECK AS MMPs REGULATOR IN ANGIOGENESIS 

 The first step in sprouting angiogenesis is the MMP-
dependent proteolytic remodeling of the common basement 
membrane that surrounds the epithelial and mural cells [15, 
16], allowing the migration of the selected endothelial cell, 
the ‘tip cell’, which lead and direct the formation of the nas-
cent branch, formed by proliferating endothelial cells, known 
as the ‘stalk cells’ [13, 15]. MMP activity also associates 
with the release of several pro-angiogenic growth factors, 
including vascular endothelial growth factor, hepatocyte 
growth factor and platelet-derived growth factor from ex-
tracellular matrix reservoirs [2, 13, 59]. Under resting condi-
tions endothelial cells express low level of active MMPs, 
which increases when the angiogenic process is triggered 
[13]. MT1-MMP, MMP-2 and MMP-9 had been associated 
with sprouting angiogenesis [13, 60]. The role of other pro-
teases in angiogenesis, both soluble and membrane MMPs, 
the cell-bound u-PA/plasmin and cathepsins are extensively 
summarized in excellent already available reviews [61-63]. 
MMP-2 and MMP-9 have the highest enzymatic activity 
against type-IV collagen, the main constituent of basement 
membrane, being essentials in the first step of matrix remod-
eling [13, 15, 64]. MMP-9 is also generated by macrophages, 
neutrophils and mast cells [65-67]. It is mainly associated 
with release of VEGF and other pro-angiogenic factors from 
the extracellular matrix reservoirs, triggering the angiogenic 
switch. Inhibition of MMP-9 activity results in blockage of 
the first step of angiogenesis, suggesting this proteinase as a 
key component of the angiogenic switch [59]. MMP-2 is 
constitutively secreted in healthy tissues [68] and associates 
with endothelial cell migration and angiogenesis [64]. In-
creased activity of MMP-2 and MT1-MMP associate with 
sprouting and organization of endothelial cells into chord-
like structures [13, 69, 70]. MT1-MMP is involved in 
pericellular proteolysis [71], being crucial for cell migration 
and directional matrix degradation in type-I collagen [72]. Its 
expression is tightly controlled in endothelial cells, induced 
in response to hepatocyte growth factor, vascular endothelial 
growth factor and tumor necrosis factor alpha, meanwhile 
angiopietin-1/Tie-2 reduce its expression [15, 72, 73].  

 MMPs could also be anti-angiogenic. Proteolytic sub-
products derived from extracellular matrix proteolysis by 
MMPs could act as anti-angiogenic factors, including the 
release of angiogenic inhibitors such as angiostatin [15]. 
Thus, localization, expression and activity of specific MMPs 
must be finely controlled. RECK could play this physiologi-
cal function, role that becomes evident by the impact on vas-
cular development in the RECK-/- mice [18, 54]. The role of 
TIMPs in the control of MMPs in the angiogenesis process 
has been reported [74, 75]. Lack of TIMPs in mice show 
only mild vascular defects [20-22], compared with those in 
Reck null mice [18, 19]. Since RECK is the only known 
MMP inhibitor anchored to the plasma membrane, it is likely 
that this molecule will exert a more precise control than 
soluble TIMPs at the cell boundary [17, 42, 76]. Considering 
that RECK acts as inhibitor of the three main angiogenic 
MMPs [18], the required control over different MMPs by 
RECK at the endothelial cell surface boundary could be fa-
voring a physiological angiogenesis.  
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 As indicated, MT1-MMP is involved in the extracellular 
matrix degradation required for tip cells migration and vessel 
extension [15, 71, 77]. However, it is also essential for mi-
grating cells, to count with a substrate to generate the pulling 
forces required to move forward [78]. Thus transient block-
age of MT1-MMP activity until the migrating cell has moved 
could be feasible. These findings highlights the potential 
involvement of RECK as inhibitor of MMPs, particularly 
MT1-MMP, playing a key role in angiogenesis. In addition, 
this protein also controls the activity of other proteases of the 
ADAMs family, particularly ADAM-10 and ADAM-17 [38, 
39, 79]. These two proteases are involved in ectodomain 
shedding and activation of specific receptors associated to 
neovascularization, such as Notch [80]. Reck has been 
shown to associates with ADAM-10 and ADAM-17 at the 
cell surface [38, 79] suggesting a role of RECK in the con-
trol of Notch pathway (Fig. 1).  

RECK AND ANGIOGENESIS SIGNALING PATH-
WAYS 

Hypoxia 

 The main physiological and pathological inducer of angi-
ogenesis is hypoxia [81, 82]. When in a given tissue the re-
quired oxygen levels fall, the hypoxia response system pro-
motes the activation of the conserved transcription factors 
hypoxia-inducible factors (HIFs), which control the expres-
sion of a variety of angiogenic, metabolic, and cell cycle 
genes [81]. Accumulation of HIF1� is the primary cellular 
response to low oxygen (O2) supply, leading the formation 
and growth of new blood vessels ensuring supply of O2 and 
other nutrients to hypoxic tissues [83, 84]. Since the fast 
growth in tumor tissue, a hypoxic environment is produced 
in the tumor womb [85]. In this regard, RECK expression is 
diminished by the HIF1�/Twist-related protein 1 pathway in 

Fig. (2). Working hypothesis for a potential role of RECK in sprouting angiogenesis 
Pro-angiogenic growth factors released from tissues requiring neovascularization, stimulate quiescent endothelial cells. One of the endothe-
lial cells of the vascular endothelium is selected as the pioneer cell, i.e., the Tip cell, which directs the migration of the endothelial cells and 
the growing branch. In cells expressing RECK (RECK+/+), to leave and migrate away, the tip cell requires the surrounding basal lamina (yel-
low blocks) be remodeled by matrix-metaloproteases (MMPs) and other proteases generated by pericytes (Pericyte) and endothelial cells 
(Endothelium) (see step 1). The endothelial cells following the migrating tip cell (at step 2), i.e., the Stalk cells, will be the structural cells of 
the nascent tube. Tip and Stalk cells express different pro-angiogenic and anti-angiogenic factors as wells as their membrane receptors and 
regulatory proteins, allowing a proper communication between Tip and Stalk cells promoting the correct formation and maturation of the 
new vascular branch (see step 3). Subsequently, endothelial cell junctions are stabilized and pericytes are recluted by mature Stalk cells (see 
step 4) leading to formation of the new basal lamina. This process finishes with the fusion of this growing branch with a branch from another 
vessel. In cells not expressing RECK (RECK–/–), the angiogenesis process is impaired showing a retarded maturation of the early vascular 
network and a phenotype characterized by the generation of several short nascent branches. From data in [2, 13, 15, 18, 19, 50, 53, 110]. 
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several tumor cell lines [86]. This phenomenon occurs via a 
mechanism involving expression of miRNAs, such as miR-
372/373, which act on the 3´ untranslated region (UTR) of 
RECK mRNA in tumor cells [86]. Moreover, since RECK
expression in HUVECs is induced by co-culture with hyper-
vascular tumor-derived cells [50] and because hypoxic con-
ditions did not induce RECK expression in this cell type in 
the absence of tumor cells, a tumor cell released factor or a 
direct contact with tumor cells induce RECK transcription in 
these human fetoplacental endothelial cells [50].  

VEGF 

 VEGF is the main family of growth factors controlling 
the angiogenic process [87]. VEGF-A or simply VEGF, 
stimulates angiogenesis through the activation of the trans-
membrane VEGF receptor 2 (VEGFR-2), which is critical 
for the selection of tip cells, promoting the branching and 
extension of new vessels [88]. The VEGFR-1 is found as 
trans-membrane (VEGFR-1) and soluble (sVEGFR-1) 
forms. Both VEGFR-1 forms, act as traps or decoys for 
VEGF, maintaining the ligand in the plasma membrane or in 
the extracellular matrix, away from VEFGR-2 [89, 90]. 
Thus, the VEGFR-1 angiogenic role falls mainly in its anti-
VEGF activity. This is particularly important for guidance of 
the growing branch, avoiding the formation of new sprouts 
from stalk cells which express more VEGFR-1 than 
VEGFR-2 [2]. VEGF is produced by tissues requiring 
neovascularization [82, 87], but is also released from the 
extracellular matrix reservoirs, mainly by MMP-9 activity, 
which is a key step for triggering the angiogenic process 
[59]. Elevated expression of VEGF correlates with high 
MMP-9 expression in a canine lymphoma [53, 91] and tumor 
mast cells [53, 92]. Thus, it seems plausible that expression 
of RECK and VEGF could also correlate. RECK expression 
is downregulated in glioma tumor cells, however many 
CD34+ endothelial cells inside the tumor tissue co-localize 
with RECK [56]. Interestingly, RECK expression in endothe-
lial cells was shown positively correlated with the malig-
nancy degree in these tumors. Although VEGF expression is 
associated to both tumor and endothelial cells also showing 
positive correlation with malignancy degree [56], not signifi-
cant positive correlation between VEGF and RECK expres-
sion was found [56]. Thus, it is unlikely that VEGF is di-
rectly involved with increased RECK expression in tumor-
associated endothelial cells [56]. The latter was comple-
mented by studies in vitro where VEGF failed to induce 
RECK expression in HUVECs [50]. Thus, VEGF seems no 
to be involved in RECK positive association with endothelial 
cells, at least, in tumor angiogenesis.  

Angiopoietins 

 Angiopoietins (ANG) is a family of vascular growth fac-
tors playing roles in embryonic and postnatal angiogenesis 
[93]. In humans, ANG-1 y ANG-2 are relevant pro-
angiogenic factors [94]. These molecules signal in a com-
petitive manner trough angiopoietin receptors and tyrosine 
kinase with immunoglobulin-like and EGF-like domains-2 
(TIE-2). ANG-1 is expressed and released by mural cells, 
maintaining the quiescence of endothelial cells trough activa-
tion of TIE-2 [94, 95]. Upon pro-angiogenic stimuli, includ-
ing VEGF, expression and release of ANG-2 is induced in 

endothelial cells at the sprouting site, which compete with 
ANG-1 for TIE-2, promoting the activation of the tip cell 
and also pericyte detachment, at the sprouting site [2, 96]. As 
the sprout growths, ANG-1 released by pericytes cause an 
initial induction of stalk cell proliferation, followed by stabi-
lization of the vessels, potentiation of cell-cell adhesion, in-
creased anti-permeability effect, and promotion of cell sur-
vival [94, 97]. RECK expression is induced by ANG-1 in 
HUVECs [50]. Since RECK expression is required for endo-
thelial cell proliferation and tube formation [50], we specu-
late on the possibility that RECK expression dependent on 
ANG-1 is associated with stalk cell proliferation and with 
formation and stabilization of the new formed vessels.  

Notch Signaling 

 Several lines of evidences indicate that Notch signaling is 
vital for angiogenesis. [98-102]. Notch signaling maintains 
tip cells’s identity in the growing sprout [2]. Tip cells ex-
press the Notch ligand, delta like ligand 4 (Dll4), which is 
induced by VEGF through VEGFR-2 activation [2, 60, 103]. 
Dll4 activates the Notch receptor of neighbor stack cells, 
upregulating VEGFR-1 and downregulating VEGFR-2 [60, 
100], which result in reduced stalk cells sensitivity to VEGF 
avoiding formation of a new vessel branch in an environment 
enriched in pro-angiogenic signals [104]. Consistent with 
this, deletion or inhibition of Dll4 results in excessive, non-
productive hyper-branching angiogenesis [105]. As indi-
cated, RECK acts as activator [38, 39] or inhibitor [79] of 
Notch signaling. Activation of Notch signaling results from 
RECK inhibition of the ADAM-10–dependent shedding of 
Notch ligand stabilizing the ligand Dll-1 at ligand expressing 
cells [38] or via a mechanism involving glycerophosphodi-
ester phosphodiesterase 2 (GDE2)–dependent cleavage of 
the GPI anchor of RECK, thus, releasing it from the plasma 
membrane and reversing ADAM-10–dependent shedding of 
the Notch [39]. Thus, pro-angiogenic roles of RECK could 
be associated with enhanced Dll4-dependent Notch signaling 
through Dll4 stabilization in tip cells. However, this hy-
pothesis is somehow unlikely, since an ADAM cleavage site 
has not been reported in Dll4 [106]. Persistent Dll4 signaling 
is associated with an anti-angiogenic phenotype as well, but 
contrary to the hyper-branching observed in Dll4 null mice, 
is characterized by a non proliferative-quiescent state of en-
dothelial cells [107, 108]. Thus, Notch-Dll4 signaling must 
be intermittently stopped or reduced, allowing the prolifera-
tion of the stalk cell in angiogenesis. This break mechanism 
seems to be achieved by the Notch ligand, Jagged-1 and 
Notch-regulated ankyrin repeat protein (Nrarp, an intracellu-
lar notch signaling inhibitor [109] expressed by the stalk 
cells [110, 111]. Jagged1 exerts pro-angiogenic activity, an-
tagonizing Dll4 dependent signaling [111]. Meanwhile, 
Nrarp, diminish the antiproliferative signal of Dll4 and at the 
same time potentiates the evolutionarily conserved pathway, 
Wnt signaling [112], inducing cell cycle progression and 
endothelial cell proliferation [108]. Thus, both Nrarp and 
Jagged-1 expression explain why stalk cells readily prolifer-
ate although they receive highest levels of Notch activation 
through Dll4 signaling from the leading tip cells [108, 110, 
111].  
 As mentioned, RECK could act as a negative regulator of 
NOTCH, inhibiting the ADAM 10 dependent shedding of 
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NOTCH receptor, which is required for its activation [79]. 
Since RECK is induced by angiopoietin-1, which is promi-
nently in stalk cells during angiogenesis [96, 97], part of the 
pro-angiogenic effects of RECK may be directly associated 
to the stalk cells, inhibiting the activity of ADAM-10 and 
ADAM-17. ADAM-10 is required for the Dll4-dependent 
signaling in endothelial cells [113] and Jagged-1 is a sub-
strate of ADAM-17 [111]. Thus, RECK should stabilizes 
Jagged-1 at the plasma membrane potentiating its antagoniz-
ing effect over Dll4 and at the same time by reducing the 
Dll4–dependent NOTCH activation. The opposite effects of 
RECK modulating Notch signaling may be explained by the 
presence of ADAMs in the Notch signal-receiving cell 
(Notch receptor expressing cell) or in Notch signal-sending 
cell (ligand expressing cell). Thus, RECK expression could 
be involved in the fine-tuning of the endothelial Notch sig-
naling ensuring a proper and successful angiogenesis.  

CONCLUDING REMARKS 

 Since the first observations that RECK deficient embryos 
die in utero showing severe vascular defects, much effort has 
been made to better understand the role of RECK in angio-
genesis. However, considering the fact that low expression 
of RECK is a common feature of many tumors and that its 
overexpression reduces tumor growth by reducing the tumor 
neovascularization, the exact angiogenic role of RECK has 
been puzzling. Studies focused to understand the role of 
RECK at the single cell level are required to break-down 
these apparent discrepancies. RECK, as a membrane an-
chored inhibitor of different MMPs and ADAMs proteases, 
exert key roles in the extracellular matrix remodeling ho-
meostasis, but also acts as modulator of different signaling 
pathways involved with the regulation of the cell behavior, 
particularly Notch. Therapeutic angiogenesis seek the treat-
ment of ischemia, which associates with lower blood supply 
in different tissues and organs as part of a regenerative proc-
ess or the disease itself [114-116]. The main target would be 
to stimulate angiogenesis in the ischemic tissue, improving 
the perfusion, O2 supply, deliver of survival factor, or even 
mobilize regenerative stem cells [88, 117, 118]. RECK act as 
master regulator of angiogenesis in both physiological and 
physiopathological vascularization, the control of its expres-
sion and/or activity emerges as a key target for therapeutic 
modulation of angiogenesis.  
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