Expert Systems with Applications 42 (2015) 8086-8094

=

Expert
Systems

with
Applications
An International
Journal

Contents lists available at ScienceDirect

Expert Systems with Applications

)

g0
i
5,

journal homepage: www.elsevier.com/locate/eswa

Adaptive filtering strategy for numerical constraint satisfaction
problems

@ CrossMark

Ignacio Araya**, Ricardo Soto *>¢, Broderick Crawford *-

2 Pontificia Universidad Catdlica de Valparaiso, Valparaiso, Chile
b Universidad Auténoma de Chile, Santiago, Chile

“Universidad Cientifica del Sur, Lima, Peru

dUniversidad San Sebastidn, Chile

€ Universidad Central de Chile, Chile

ARTICLE INFO ABSTRACT

Article history:
Available online 26 June 2015

The reliability and increasing performance of search-tree-based interval solvers for solving numerical
systems of constraints make them applicable to various expert system domains. Filtering methods are
applied in each node of the search tree to reduce the variable domains without the loss of solutions.
Current interval-based solvers generally leave it up to the solver designer to decide which set of filtering
methods to apply to solve a particular problem. In this work, we propose an adaptive strategy to dynam-
ically determine the set of filtering methods that will be applied in each node of the search tree. Our goal
is twofold: first, we want to simplify the task of the solver designer, and second, we believe that an adap-
tive strategy may improve the average performance of the current state-of-the-art strategies.

The proposed adaptive mechanism attempts to avoid calling costly filtering methods when their prob-
ability of filtering domains is low. We assume that fruitful filtering occurs in nearby revisions or clusters.
Thus, the decision about whether or not to apply a filtering method is based on a cluster detection mech-
anism. When a cluster is detected, the associated methods are consecutively applied in order to exploit
the cluster. Alternately, in zones without clusters, only a cheap method is applied, thus reducing the fil-
tering effort in large portions of the search. We compare our approach with state-of-the-art strategies,
demonstrating its effectiveness.

Keywords:
Interval-based solvers
Branch and bound
Filtering algorithms
Consistency techniques

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction o their ability to take into account bounded errors in the coeffi-

cients of the constraints, e.g., errors of measurement and

Interval-based solvers can solve systems of numerical con-
straints (i.e., nonlinear equations or inequalities over the reals).
Their reliability and increasing performance make them applicable
to various expert system domains, such as robotics design and
kinematics (Merlet, 2011), dynamic systems in robust control
and autonomous robot localization (Kieffer, Jaulin, Walter, &
Meizel, 2000), and proofs of conjectures (Sandretto, Trombettoni,
& Daney, 2013; Tucker, 2002). Three main features distinguish this
approach from others:

o their reliability, i.e., their robustness w.r.t. roundoff errors due
to floating-point calculation (Neumaier, 1990),

* Corresponding author.
E-mail addresses: ignacio.araya@ucv.cl (I. Araya), ricardo.soto@ucv.cl (R. Soto),
broderick.crawford@ucv.cl (B. Crawford).
URLs: http://[www.inf.ucv.cl/"iaraya (I. Araya), http://www.inf.ucv.cl/"rsoto
(R. Soto).

http://dx.doi.org/10.1016/j.eswa.2015.06.030
0957-4174/© 2015 Elsevier Ltd. All rights reserved.

o their ability to prove properties shared by an infinite (while
continuous and bounded) set of points (Goldsztejn, 2005;
Jaulin, Kieffer, Didrit, & Walter, 2001; Rohn, 1986; Shary, 1995).

There exist several interval-based solvers designed for solving
systems of numerical constraints or Numerical Constraint
Satisfaction Problems (NCSPs) (e.g., RealPaver (Granvilliers &
Benhamou, 2006), Newton (Van Hentenryck, McAllester, & Kapur,
1997), Ibex (Chabert & Jaulin, 2009)). These solvers are variations
of a branch and prune algorithm based on the interval Newton
operator (Neumaier, 1990), and they generally perform a
two-phase process. In the branching phase, a variable is chosen
and its domain is split into two sub-domains, thus generating
two subproblems. In the pruning phase, a series of filtering meth-
ods or contractors attempt to reduce the variable domains of each
subproblem without loss of solutions. The phases are interleaved,
generating a search tree. The process starts with the initial domain
and stops when the domain sizes in the leaves of the search tree

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.06.030&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.06.030
mailto:ignacio.araya@ucv.cl
mailto:ricardo.soto@ucv.cl
mailto:broderick.crawford@ucv.cl
http://www.inf.ucv.cl/<ce:sup>~</ce:sup>iaraya
http://www.inf.ucv.cl/<ce:sup>~</ce:sup>iaraya
http://www.inf.ucv.cl/<ce:sup>~</ce:sup>rsoto
http://www.inf.ucv.cl/<ce:sup>~</ce:sup>rsoto
http://dx.doi.org/10.1016/j.eswa.2015.06.030
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

I. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094 8087

are smaller than the precision given as input. These leaves contain
all the solutions of the NCSP.

Current interval-based solvers (e.g., Ibex and RealPaver) include
several contractors focusing on different types of subproblems.
These methods can be chosen and parameterized by the user,
and they are generally applied in each node of the search tree.
Among the most well-known methods, we can mention the
following:

e The interval Newton operator and its numerous variants
(Hansen, 1992b; Neumaier, 1990), which offer very good results
when the system is well-constrained (i.e., square systems of
independent equations with a finite number of solutions) and
the domain sizes are small enough (Hansen, 1992a).
Constraint propagation-based algorithms proposed by the con-
straint programming community (e.g., HC4 (Lhomme, 1993;
Benhamou, Goualard, Granvilliers, & Puget, 1999), Box
(Benhamou et al., 1999), Mohc (Araya, Trombettoni, & Neveu,
2010), 3BCID (Trombettoni & Chabert, 2007), ACID (Neveu,
Trombettoni, & Araya, 2015)). They filter domains by enforcing
some level of consistency (e.g., hull consistency (Lhomme,
1993)!) and may achieve strong domain reductions of variables
related to nonlinear constraints. However, due to the reduced
scope of local consistencies, they are not so effective when the
graph representation of the constraint system has many cycles.
Stronger levels of consistency (e.g., 3B-consistency (Lhomme,
1993)) can improve the solver's performance in some difficult
instances, but they are generally too expensive to be applied in
every node of the tree search.

Filtering algorithms based on linear relaxations (Araya, Neveu,
& Trombettoni, 2012; Lebbah, Michel, Rueher, Daney, &
Merlet, 2005, 2007; Ninin, Messine, & Hansen, 2014) achieve
good results when the constraint system is almost linear (i.e.,
when the domain sizes of nonlinear variables are small enough).
These methods usually work on a linear relaxation of the entire
system or a part of it. The Simplex algorithm is then used to nar-
row the domain of each variable.

In this work, we propose an adaptive strategy to dynamically
determine the set of contractors that will be used in each node
of the search tree. Our goal is twofold. First, we want to simplify
the task of the solver user or designer related to the election of
the adequate set of contractors for solving a particular problem.
Ideally, we would like to select all the contractors provided by
the solver and let the solver choose which methods to use and
when. Second, we believe that an adaptive strategy may improve
the average performance of the current state-of-the-art strategies.
We hope to reduce the effort it takes to apply all the contractors in
each node of the search tree but still maintain the effectiveness of
the contraction phase.

In our proposal, we assume that fruitful domain reductions
occur in nearby nodes or clusters (the so-called clustering effect,
experimentally identified for finite-domain constraint satisfaction
problems in Stergiou, 2008). Thus, the basic idea consists of mon-
itoring the search process in order to find clusters. The monitoring
is performed by the contractors, which are applied periodically (for
instance, one call every 4 nodes of the search tree). Each method is
associated with a frequency depending on its time cost, i.e.,
cheaper methods are applied more frequently than expensive ones.
When a contractor ctc performs filtering successfully, we say that
a cluster has been detected. In order to exploit this cluster, ctc is
applied successively in the nodes of the tree until it fails. ctc is

! hull consistency is the counterpart of bound consistency in discrete constraint
programming.

applied only to the active constraints, i.e., constraints that actively
participated in the reduction of domains related to the monitored
node.

1.1. Related work

In interval-based solvers, expensive contractors are generally
parameterized in order to be applied only when the subproblem
verifies some specific conditions. For instance, the Newton opera-
tor in Ibex is applied when the largest domain is smaller than a
given precision (Chabert & Jaulin, 2009). Optimization-Based
Bound Tightening (OBBT) is a filtering method commonly used in
nonconvex mixed-integer nonlinear programming (e.g., in opti-
mizers such as Couenne (Belotti, Lee, Liberti, Margot, & Wadchter,
2009), BARON (Sahinidis, 1996), and ANTIGONE (Misener &
Floudas, 2013)). Because applying a full round of OBBT amounts
to solving 2n linear programs, it is typically applied at the root
node and within the search tree only with limited frequency or
based on its success rate (Gleixner & Weltge, 2013). In Araya
et al. (2010), Mohc, a contractor that exploits the monotonicity of
functions, is fully applied only if a test that estimates its impact
is passed.

Additionally, various ad hoc mechanisms have been proposed to
reduce the effort put into specific interval-based filtering algo-
rithms. For instance, in Goldsztejn and Goualard (2010), the
authors propose an adaptive mechanism for an algorithm enforc-
ing the box consistency (Benhamou et al., 1999). It takes into
account past difficulties encountered in filtering a domain. In
Neveu et al. (2015), the authors propose ACID, an adaptive variant
of 3BCID. 3BCID is a state-of-the-art contractor that enforces
3B-consistency. It basically splits the domain of each variable
(one-at-a-time) into several sub-domains. Then, a method enforc-
ing a weaker consistency (e.g., HC4) is applied in order to reduce
the domain of the split variable by proving that the sub-domains
do not contain solutions. ACID reduces the cost of 3BCID by reduc-
ing the number of handled variables. The number of variables han-
dled is auto-adapted during the search. In some cases, ACID only
calls once the method enforcing the weak consistency. The
Achterberg’ heuristic proposed in Baharev, Achterberg, and Rév
(2009) reduces the number of calls of the Simplex algorithm in
linear-relaxation-based contractors. These contractors generally
reduce each bound of the variable domains by applying the
Simplex algorithm to minimize or maximize the variable subject
to a linear relaxation of the nonlinear system. The Achterberg’
heuristic next selects the variable that may potentially offer the
maximum reduction according to the found optimal solutions in
the relaxed problem. The mechanism stops when the potential
reduction of the next variable is too small to justify the effort.
This heuristic has been used by solvers in several recent works
(Araya, Trombettoni, & Neveu, 2012; Baharev & Rév, 2009; Hladik
& Horacek, 2014).

In constraint satisfaction problems with discrete domains, some
recent works adaptively select which filtering method to apply to
each node of the search tree and constraint of the system. In
Stamatatos and Stergiou (2009), a preprocessing phase learns
which level of consistency to apply to which parts of the instance.
Once the level is learned, it is statically applied during the entire
search. In Balafrej, Bessiere, Coletta, and Bouyakhf (2013), for each
variable/constraint, the solver learns during the search a parameter
that characterizes a parameterized level of consistency to apply to
the variable/constraint. That parameterized level lies between AC
and a stronger level. In Balafrej, Bessiere, Bouyakhf, and
Trombettoni (2014), the authors propose adaptive variants of
partition-one-arc-consistency that do not necessarily run until
having proved the fixpoint. The pruning can be weaker than the
full version, but the computational effort can be significantly

8088 L. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094

reduced. In Stergiou (2008) and Paparrizou and Stergiou (2012),
heuristics allow the solver to dynamically select AC or a stronger
level of consistency (maxRPC) during the search depending on
the variable/constraint. The approaches are based on the clustering
effect. Basically, when a filtering algorithm F,,.q is successful
(according to some propagation indicator), a stronger filtering
algorithm Fy,ng is applied successively in order to exploit the clus-
ter until it fails. The approach is restricted to two filtering algo-
rithms, Fyeqx and Fspong, Such that Fgyone is strictly stronger (in
filtering) than Feq.

Compared to the related work, the main contributions of our
approach are the following.

e Unlike mechanisms in current interval-based solvers (which
generally control the application of only one contractor), we
propose a simple and unified mechanism for controlling the
application of several contractors.

Unlike ad hoc adaptive mechanisms, our approach treats con-
tractors as black boxes. Thus, it can be extended to use more
and diverse kind of contractors. The only information required
by our method is to know the set of constraints actively used
during the application of each contractor (in any case, if this
information is not available, we can assume that all constraints
were actively used).

Unlike most of works on discrete domains, our approach
may use more than two contractors, and they are not
required to have a strict relation of consistency. This is very
important feature because, in general, the consistency (or
filtering power) among interval-based contractors is not
comparable.

Section 2 shows some background related to intervals and
interval-based contractors for numerical CSPs. In Section 3, we
explain how to extract the active constraints from different types
of contractors. In Section 4, we present our approach and an adap-
tation of Stergiou’s approach. Experiments are shown in Section 5.
Finally, conclusions are given in Section 6.

2. Background
2.1. Intervals

An interval [x;] = [x;, X;] defines the set of reals x; s.t. x; < x; <X;,
where x; and X; are floating-point numbers. IR denotes the set of all
intervals. The size or width of [x;] is w([x;]) = X — x;. m([x;]) denotes
the middle of [x;]. A box [x] = ([x1], ..., [Xs]) determines the Cartesian
product of intervals [x;] x ... x [x,;]. The union of several boxes is
generally not a box, and a Hull operator has been defined instead
to define the smallest box enclosing all of them.

A function [f] : IR" — IR is an interval extension of a real function
f:R" — R if it computes an enclosure of the image of f over any
box [x], i.e., V[x] € IR", [f]([x]) 2 {f(x),x € [x]}.

2.2. The interval-based NCSP solver

In this work, we address solving non-linear systems of con-
straints or NCSPs.

Definition 1 (Numerical constraint satisfaction problem (NCSP)). A
numerical CSP, or constraint system S = (c,x,[x]), consists of a
vector x = (x1,...,Xp) of variables varying in a box [x] € IR" and a
set of constraints c. c involves equality and inequality arithmetic
constraints. A solution x' € [x] of S satisfies all of the constraints in c.

When interval-based methods are used to compute the set of all
of the solutions of an NCSP, they generally find a set of atomic
boxes B. (i.e., boxes smaller than a required precision), such that
all of the solutions of the problem belong to at least one of these
boxes.

Without loss of generality, consider a set of less-than con-
straints ¢ = {f,(x) <0,...,f(x) <0}, where x = (x4,...,X,) corre-
sponds to a vector of variables. Algorithm 1 shows the basic
skeleton of an NCSP algorithm. The search tree is implemented
using a stack L, i.e., nodes are removed from and inserted to the
front of L. This implies that the search follows a depth-first search
strategy.

Algorithm 1. The NCSP solver

Data: ¢, x
procedure NCSPsolver([x],€, contractors); out: B
L—{i}:
while L # () do
[x] < pop(L);
(K], [¥']) — bisect([x]);
for all [x] € {[x/],[x"]} do
[[contraction phase:;
for all ctc € contractors do
| %] — cte(x,0);
end
if [x] # ¢ then
if is-atomic-box? ([x],€) then
| Be —Be U{[x]}:
else
| push (L, [x]);
end
end
end
end
end.

In each iteration, a node is taken from the front of L. Each node
is treated in two phases: branching/bisection and contraction. The
bisect method divides the current box into two sub-boxes by
splitting the domain of one variable. The new boxes are then con-
tracted by a set of contractors. Contractors from the contractors
list are applied one by one to the box [x] and the set of constraints c.
They attempt to filter the boxes by eliminating inconsistent values
from their bounds without loss of solutions. If all the values in a
particular domain are filtered (i.e., a wipeout is produced), an
empty box is returned.

After contraction, empty boxes are discarded. Non-empty boxes
are inserted in L only if they are not atomic boxes; otherwise, they
are inserted in B.. At the end of the search, B. contains the set of all
of the solutions of the problem.

3. Contractors and active constraints

Among the primary and most expensive components in NCSP
solvers are the contractors. In general, a contractor is applied to a
set of constraints ¢ and a box [x]. Then, the contractor attempts
to contract the box [x] by removing values from the bounds of
the intervals that do not satisfy one or more constraints in c.
When a contractor filters a box, we denote active constraints as
those constraints used actively for filtering the box. In other words,
the active constraints are those constraints in which the removed
values were detected as inconsistent by the corresponding contrac-
tor. Active constraints are of crucial importance to our approach;

I. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094 8089

thus, we explain how to obtain them from different types of con-
tractors in this section.

3.1. Constraint propagation contractors

Constraint propagation contractors treat constraints indepen-
dently. They attempt to enforce the hull consistency on each
constraint of the system. Enforcing the hull consistency is
equivalent to finding the smallest box containing all the solu-
tions related to a single constraint. This is an intractable prob-
lem in general, and several algorithms have been proposed thus
far (e.g., Araya et al., 2010; Benhamou et al., 1999; Lhomme,
1993). All of them perform an AC3-like propagation loop for
propagating the domain changes among constraints until a fix
point is reached.

Algorithm 2. Basic structure of a constraint propagation
contractor

procedure propag_ctc([X],C); out: [x]
q¢
while g # () do
¢j — pop(q);
revise([x], ¢);
if is_empty([x]) then
return;
else
for variable x; involved in ¢; was significantly reduced

do //c; is an active constraint;
for ¢, € c such that x; is involved in ¢; and ¢, # ¢; do
| push(q, cy):
end
end

end
end
end.

Algorithm 2 shows the basic structure. It works as follows. A
propagation queue q is first initialized with all the constraints of
the system. An iterative process then handles every constraint in
q until ¢ becomes empty. A revise procedure performs the con-
traction of the box by considering a single constraint ¢; € q. If the
contraction returns an empty box, the procedure finishes.
Otherwise, each variable x; involved in ¢, significantly reduced
by the revision, propagates the changes to other constraints cy
involving x;: these constraints are pushed into the propagation
queue to be handled in subsequent iterations.

For this type of contractor, we consider active constraints to be
those constraints causing a significant reduction in some variable
domain (c; in the for-loop).

3.2. 3B-like contractors

Stronger consistency algorithms similar to 3B (e.g., 3BCID,
ACID) treat one variable at a time. The domain of the variable [x;]
is split into several slices. Each corresponding subproblem is con-
tracted by a constraint propagation contractor. Finally, the hull of
the different contracted subproblems is returned. Generally, when
some reduction is reached, the most reduced interval corresponds

to that of the treated variable. Thus, when x; is treated, we consider
active constraints to be those constraints helping to remove slices
from the bounds of [x;]. The active constraints are obtained from
the calls to the constraint propagation contractor that removed
the slices.

3.3. Linear relaxation-based contractors

These methods usually work on a linear relaxation of the
entire system or a part of it. Then, the Simplex algorithm is used
to narrow the domain of each variable by using the relaxed sys-
tem, i.e., the problem of minimizing x; (resp. maximizing x;) is
solved to find a new lower bound (resp. upper bound) for each
interval [x;]. In this type of contractor, we consider active con-
straints to be the same active constraints found by Simplex at
the optimal solution. These constraints can be found through
the dual solution vector returned by the algorithm. Each value
in this vector is associated with one constraint in the linear sys-
tem, and each value different from zero corresponds to an active
constraint. Of course, we map the linear active constraint used
by Simplex to the nonlinear constraint in the original problem.
The active constraints are considered only if the domain of the
related variable has been reduced by more than a user-defined
ratio .

4. The adaptive contraction approach

In this section, we present our approach. The basic idea con-
sists of monitoring the search, i.e., applying costly contractors
from time to time (e.g., once every 4 nodes), in order to detect
clusters. Clusters are regions in the search space where contrac-
tors are effective. We consider that a cluster has been detected
when a contractor ctc reaches a significant contraction in the
node. When this event occurs, we exploit this cluster by consec-
utively calling the same contractor ctc with its subset of active
constraints. ctc is called until the search leaves the cluster, i.e.,
until ctc ceases to be successful for filtering. When a contractor
is applied in a box, it returns the filtered box and the set of active
constraints Ce.

We consider a filter to be a pair (ctc, ¢), where ctc is a contrac-
tor and c is a set of constraints. The algorithm uses two hash table
lists. The periodicity list T keeps the set of filters F mapped to its
periodicity of application T[F]. That is, F should be used at least
once every T[F] treated nodes. This list is fixed and may be defined
by the user before starting the search. For instance, it can contain 3
filters: (HC4 ,c), (3BCID,c) and (LRC, c), where c is the set of all the
constraints in the system. Periods can be set by hand according to
the cost of the filters. We know that, in general, LRC is more expen-
sive than 3BCID and that 3BCID is more expensive than HC4 .
Thus, we could set, for instance: T[(LRC,c)] = 8,T[(3BCID,c)] =4
and T[(HC4 ,c)] = 1. The choice of powers of two is no coincidence.
In this manner, we ensure that when it is the turn of an expensive
contractor ctc to be applied, all the contractors cheaper than ctc
have already been applied (contractors are applied from the cheap-
est to the most expensive).

The cluster list C is dynamic and contains the set of clusters cur-
rently detected by the monitoring. Each cluster is represented by a
filter F, which is mapped to an integer value C[F]. This value corre-
sponds to the number of times the filter F will be applied consec-
utively in order to exploit the filtering in the cluster. Each time a
filter of the cluster is applied, C[F] decreases in 1. Filters for which
C[F] = 0 are removed from the list.

8090 L. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094

Algorithm 3. Adaptive filtering

procedure adaptive_contraction([x],c,L,T,C); out: x]
iters « iter +1;
filters — {};
for each F c T do
| if iters%T[F] = 0 then add(filters,F)
end
for each F € Cdo
add(filters, F);

C[F] — C[F] - 1;
if C[F] = 0 then remove(C,F);
end

for each (ctc,c) € filters do

Cact — cte([x],c);

if cqcr # {} then
/| a cluster has been detected;
Cl(cte,caer)] < L;

end

end

end.

Algorithm 3 shows the pseudo-code of our approach. This pro-
cedure replaces the contraction phase in Algorithm 1. The method
adaptive_contraction first generates a set of filters filters to be
used for contracting the current box [x]. Filters F whose turns have
come, i.e., iters%T[F] = 0, are selected from the list T. Additionally,
all the filters from the cluster list are selected, decreasing the val-
ues C[F] in 1. In the second part of the algorithm, the filters are
applied in turn to contract [x]. If a significant contraction is reached
in the box (i.e,, cq # {}), then the active constraints ¢, and the
contractor ctc form a new filter, which is added to the cluster list.
In the experiments, constraints are considered “active” when they
help to contract one interval by at least 10%. L corresponds to the
minimal number of consecutive calls that will be performed to the
filter in order to exploit the cluster.

It makes little sense to apply a contractor to different sets of
constraints. It is probably better to apply the contractor to the
union of these sets. The cost is similar, but the second option offers,
in general, a more powerful contraction. That is why, in the filters
list, each contractor is associated with only one filter. Each time
a new filter F; = (ctc,c') is added to filters, if there is a filter with
the same contractor F, = (ctc,c?), then F, updates its set of con-
straints to ¢! Uc? and F; is removed.

4.1. A Stergiou-based adaptive contraction

In order to offer a more interesting comparison, we adapted the
finite-domain oriented mechanism proposed in Stergiou (2008,
2012) to interval-based contractors.

The authors propose a mechanism for dynamically switching
between a weak (W) and a strong (Sy.) propagation method
(propagator) for individual constraints during the search. The
two main proposed heuristics are as follows:

e Hy: The propagator W, is applied in the constraint until a
wipeout is produced. If this is the case, the propagator S is
applied in the constraint until no wipeouts are produced in L
consecutive revisions of the constraint.

e H,: The propagator W is applied in the constraint until at least
one value is filtered from some domain. If this is the case, the
propagator Sy is applied in the constraint until no filtered
domains are produced in L consecutive revisions of the
constraint.

We modified Algorithm 3 to adapt the heuristics to
interval-based contractors. Algorithm 4 shows the contraction pro-
cedure applying the H, heuristic.

Algorithm 4. Adaptive filtering

procedure H2_contraction([x],c,L, Wee, Scrc); out: [x]

c — {},
for each F = (S¢,¢”) € Cdo

c —cuU C//;

C[F] — C[F] - 1;

if C[F] = 0 then remove(C,F);
end

Cact — Weee([x], c/C');

Cact < Caet U Sctc([x]-, cu Cact>:

if cor # {} [*and [x] = 0/ then
/| a cluster has been detected;
C[(Sctc, Cact)] — L;

end

end.

The algorithm filters the current box using two contractors (or
sets of contractors): Wy and S (e.g., HC4 and 3BCID respec-
tively). First, it generates the set of constraints ¢’ that will be used
by the stronger contractor S... Constraints from the cluster list
are selected, and the value of the corresponding filter is decreased
by 1. Then, the algorithm applies W, to the entire set of con-
straints minus the constraints in ¢’ and applies Sq. to the recently
generated set of constraints ¢’ plus the active constraints related
to the recent application of the weaker contractor. The set of
active constraints is obtained from both contractors. Finally, these
active constraints generate a new cluster associated with the con-
tractor Sge.

The heuristic H; is obtained by simply uncommenting the
empty box condition of the last if statement and considering as
active constraints only those constraints that cause a wipeout in
the contractor.

5. Experiments

In order to validate our approach, we implemented the adaptive
contraction algorithm into a state-of-the-art solver of the
Interval-Based EXplorer library (Ibex (Chabert & Jaulin, 2009)).
All the experiments were run on the same server (PowerEdge
T420, with 2 quad-core Intel Xeon processors running at
2.20 GHz and 8 GB RAM).

The periodicity list T was initialized with four filters, which are
applied to the entire system of constraints c:
(HC4 ,C),(3BCID,C),(LRC,c) and (IntervalNewton,c). The peri-
odicity of (HC4 ,c) and (IntervalNewton,c) was fixed to 1, i.e,
these filters are applied in each node of the search tree. The former
is utilized because it is the cheapest method and the standard fil-
tering algorithm in interval solvers, and the latter is utilized
because it is applied to a reduced set of instances (systems com-
posed by n variables and n equations). For variable selection, we
use the SmearSumRel heuristic, a variant of Kearfott’s Smear func-
tion described in Trombettoni, Araya, Neveu, and Chabert (2011,
2013). Related to the extraction of active constraints from contrac-
tors, we considered that constraints are “active” when they help to
contract one interval by at least 10%.

Our approach was compared with a state-of-the-art solver that
simply replaces the adaptive contraction by a classical contraction
phase. That is, the entire set of contractors is applied in each node
of the search tree (see Algorithm 1).

I. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094 8091

A portion of the instances was selected from the COPRIN bench-
mark database.” We also transformed the constrained global opti-
mization problems from series 1 and 2 of the COCONUT
benchmark database® into unsatisfiable NCSPs. The instances were

transformed just by adding the constraint f,(x) <f,(x*)—107%,
where f, is the minimization objective function and f,,(x*) is the opti-
mal cost of the optimization problem. From the entire set of
instances, we only considered instances that could be solved by
the state-of-the-art solver in times ranging from 2 s to 3600 s (20
instances from COPRIN and 43 modified instances from COCONUT).

Definition 2 (Average relative gain). We define as relative time
tr(a, b,) the ratio between the time taken by an strategy a and the
worst time taken by strategies a and b in solving an instance 7, i.e.,

tr(a,b,) = m Then, the average relative gain of an

strategy a w.r.t. the state-of-the-art strategy (SoA) is given by

+(SoAss, . . .
%, where IT is the set of the considered instances.
mell~ T\ ’

5.1. Comparison among different frequency configurations

Table 1 summarizes the results, comparing the state-of-the-art
solver with our approach for different configurations of the period-
icity list. Each row shows the results related to a configuration
t1,t;, where T[(3BCID,c)] = t; and T[(LRC,c)] = t,. In these experi-
ments, we fixed L to 2. SoA denotes the state-of-the-art solver.

Columns show the average relative gain (av. gain) and the total
time (tot. time) spent by configurations in different sets of
instances: the entire set of instances (All); instances requiring
between 20 and 3600s for at least one configuration; and
instances requiring between 2 and 20s for at least one
configuration.

Note that configurations (1,2), (1,4) and (2,4) offer the best
gains, outperforming the state-of-the-art solver by up to 12%.
These configurations also offer the lowest total times.
Alternately, strategies with lower frequencies offer worse results.
This is probably due to the fact that the reduction in contraction
effort by a node is not enough to compensate for the increase in
size of the search tree.

Table 2 reports detailed results for the best configurations and
the subset of instances with the largest differences in time spent
(>20%). For each strategy, we reported the spent CPU time and
the size of the tree search as the number of treated nodes. The last
row shows the average relative gain of each configuration for the
subset of instances.

Observe that although the configuration (2,4) treats the largest
number of nodes, it consumes the lowest total CPU time.

Related to this subset of instances, the best results are com-
monly obtained by configurations (1,4) and (2,4). The worst result
is obtained in the instance linear, where the state-of-the-art solver
outperforms all configurations by a factor between [1.78,3.30]. The
adaptive contraction approach outperforms by 18% the
state-of-the-art solver on this subset of instances. The best results
are obtained on the instances creactor, ex7_3_5, himmell6 and
batch, where the adaptive contraction outperforms the
state-of-the-art solver by a factor of approximately 2.

5.2. Comparison among different values of L

In a second series of experiments, we compared the adaptive
contraction approach for different values of L. Recall that L is a

2 http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html.
3 http://www.mat.univie.ac.at/neum/glopt/coconut/Benchmark/Benchmark.html.

Table 1
Comparison between the adaptive contraction approach and the state-of-the-art
solver.

20 <t <3600
(35 instances)

2<t<20
(33 instances)

Conf. All (63 instances)

Av. gain Tot. time Av.gain Tot. time Av.gain Tot. time
SoA 1.00 10757 1.00 10532 1.00 337
1,2 1.06 10203 1.06 9990 1.07 308
14 1.08 10210 1.08 9998 1.12 295
1.8 0.97 10893 1.03 10616 0.95 357
2,1 0.96 11335 0.93 11112 0.98 352
2,2 1.05 10352 1.04 10135 1.06 317
24 1.07 10264 1.07 10054 1.10 296
2,8 0.97 11338 1.01 11069 0.98 351
4,1 0.91 11884 0.87 11652 0.94 388
4.2 1.01 10682 0.99 10461 1.03 340
44 1.04 10586 1.03 10368 1.08 309
4.8 0.94 11630 0.97 11349 0.95 366
8,1 0.88 12769 0.82 12526 0.91 446
8,8 0.89 12574 0.93 12260 0.90 403

threshold related to the clustering effect. When a cluster is
detected for a filter F (i.e, F has been successful in reducing
domains), F is applied successively in the following nodes until it
fails L consecutive times. L = 0 means that the clustering effect is
not considered, i.e., each filter F is just applied periodically accord-
ing to the periodicity table. Small values of L (e.g., L = 1) may imply
that the algorithm incorrectly detects the end of a cluster, while
large values of L may unnecessarily increase the filtering effort.

Table 3 summarizes the results. We took three of the best fre-
quency configurations from the previous section
((1,4);(2,4); (4,4)) and two bad configurations Average relative
gain and set L to different values in {0, 1,2,4, 8}. Additionally, as
an alternative, we considered L to be equal to the period associated
to each filter (L = T in the table). For instance, given the configura-
tion (4, 8), we set L = 4 for the filter (3BCID,c) and L = 8 for the fil-
ter (LRC,C).

Columns show the average relative gain and total time spent by
the strategies in the different sets of instances. Note that the
approaches that do not take into account the clustering effect
(i.e.,, L =0) have the worst results, offering, on average, a gain
lower than 0.5. Alternately, no large differences are noted for dif-
ferent values of L > 0. It seems that values in [2,8] offer good
results. Additionally, setting L automatically to the period of each
filter seems to be a good choice, avoiding the task of setting this
value by hand. Observe that the worst configurations greatly
improve their performances by setting L to larger values.

Table 4 reports detailed results for the configuration (1,4) and
different values of L. We selected all the instances such that the
ratio between the lowest and largest CPU time taken by the strate-
gies (with the exception of L = 0) is larger than 1.2. For each strat-
egy, we reported the spent CPU time and the size of the tree search
in terms of the number of treated nodes. The last row shows the
average relative gain of each configuration for the subset of
instances.

The best performances for each instance are marked in bold.
Note that in some instances, the best results are offered by the
strategy without clustering. Those are instances in which the filter
(LRC, c) is probably not useful. Strategies with L > 0 also offer good
results in those instances. Alternately, when the strategy without
clustering offers bad results, it most likely indicates that the filter
(LRC,c) is useful. Additionally, in this case, strategies with L >0
offer good results. Furthermore, strategies with L > 0 commonly
offer results that are better than the strategy without clustering
and the state-of-the-art solver (e.g., synth, trig2-13, ex5_4_4,

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
http://www.mat.univie.ac.at/neum/glopt/coconut/Benchmark/Benchmark.html

8092 L. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094
Table 2
Comparison between the adaptive contraction approach an the state-of-the-art solver in the subset of instances with the largest differences in performance.
Instance State-of-the-art 1,2 14 24
Time #Nodes Time #Nodes Time #Nodes Time #Nodes
Brent 20.7 2896 16.9 2940 15.7 3566 15.8 4576
Butcherb 449 70922 400 81542 374 98840 390 112334
Creactor 12.72 2716 9.28 2778 7.49 2834 7.03 2692
Eco9 21.1 2680 18.2 3262 14.7 3706 153 4622
i5 28.0 2976 22.0 3098 17.8 3210 19.8 4028
Kats14 104 188 109 288 12.8 368 10.2 686
Trig2-13 116 8308 98 8434 82.8 8542 89 10954
Dualcl 20.0 634 153 736 12.5 898 10.1 910
Ex5_4_4 263 3978 233 4914 226 6434 218 6262
Ex6_1_1 124 2336 121 2624 121 3324 101 3324
Ex6_1_3 65.7 5022 60.9 5804 60.6 7190 511 6912
Ex7_3_5 4.02 398 2.70 432 2.00 454 1.84 560
Ex8_5_1 7.48 7836 7.07 8568 5.30 2390 5.26 2698
Himmel16 471 3940 355 4326 27.6 4424 28.5 5648
Hydro 8.36 740 8.93 840 114 1190 11.7 1620
Linear 52.0 3858 93.6 6236 175 10412 108 9614
Batch 5.29 26 8.48 68 3.14 18 8.92 76
Hs119 154 592 16.4 726 19.8 1084 194 1412
Pentagon 2.22 1290 1.96 1322 1.80 1336 1.92 1672
Total 1162 121336 1071 138938 1083 160220 1022 180600
Av. gain 1.00 1.08 1.19 1.18
Table 3
Comparison between different values of L.
Conf. L All (65 instances) 20 < t < 3600 (35 instances) 2 < t <20 (33 instances)
Av. gain Tot. time Av. gain Tot. time Av. gain Tot. time
1.4 0 0.36 108030 0.50 61280 0.30 50411
1 1.06 10021 1.09 9793 1.07 311
2 1.08 10210 1.07 9998 1.11 295
4/T 1.08 10153 1.06 9946 1.11 295
8 1.08 10205 1.06 10001 1.11 297
24 0 0.36 102854 0.48 60879 0.30 45645
1 1.07 10241 1.07 10029 1.11 300
2 1.07 10264 1.07 10054 1.10 296
4 1.05 10280 1.06 10064 1.07 310
8 1.06 10305 1.06 10096 1.08 305
T 1.06 10353 1.05 10142 1.08 306
4,4 0 0.30 110632 0.38 66331 0.29 47987
1 1.05 10504 1.03 10288 1.09 310
2 1.04 10586 1.03 10368 1.08 309
4/T 1.05 10520 1.03 10315 1.09 305
8 1.05 10661 1.03 10458 1.08 303
4.8 2 0.94 11630 0.97 11349 0.95 366
T 1.05 10586 1.03 10380 1.08 308
8,8 2 0.89 12574 0.93 12260 0.90 403
8/T 1.01 10838 1.00 10618 1.03 321
SoA 1.00 10757 1.000 10532 1.000 337

ex8_5_1, hydro, batch, disc2). These results highlight the interest in
controlling the filtering effort in branch and bound algorithms.
Finally, note that when L = 8, the adaptive contraction strategy
outperforms the state-of-the-art solver by 22% on this subset of
instances.

Fig. 1 shows the performance profile. We compared the
state-of-the-art solver and the adaptive contraction approach with
the configuration (1,4) and L = 8. From the set of instances solved
in [2,3600] seconds by at least one of the two strategies, each curve
represents the percentage of instances solved by the corresponding
strategy in less than factor times the CPU time spent by the best
strategy for each instance. For instance, when factor = 1, each curve
shows the percentage of instances in which the corresponding

strategy gives the best results (in 78% of the instances, the adaptive
strategy outperforms the state-of-the-art solver).

Observe that when factor is just 1.05, the adaptive contraction
approach reaches 95% of solved instances. The same percentage
is reached by the state-of-the-art solver only when the factor is
equal to 1.50.

5.3. Results of the Stergiou-based approach

The Stergiou-based approach requires one weaker and cheap
contractor and one stronger and expensive one. We decided to
define HC4 as the weaker contractor and 3BCID + LRC (i.e., a con-
tractor which applies 3BCID first and then LRC) as the stronger

I. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094 8093
Table 4
Comparison of different values of L for a subset of instances.
State-of-the-art L =0 (no clustering) L= L=2 L=4 L=8
Time #Nodes Time #Nodes Time #Nodes Time #Nodes Time #Nodes Time #Nodes
Brent 20.7 2896 16.0 3096 16.0 3192 15.7 3566 15.6 3174 15.5 3172
Butcherb 449 70922 369 114280 368 100670 374 98840 388 86122 407 78796
Creactor 12.7 2716 6.30 2902 7.18 2850 7.49 2834 8.58 2790 9.52 2764
Eco9 21.1 2680 12.8 4050 143 3730 14.7 3706 17.4 3304 19.3 2730
i5 27.9 2976 17.2 3262 18.2 3190 17.8 3210 20.0 3110 21.0 3106
Kats14 104 188 219 1356 12.3 370 12.8 368 11.9 248 11.5 212
Synth 305 2602 277 9756 247 4398 264 4420 268 3250 290 2664
Trig2-13 115.9 8308 82.7 8542 823 8542 82.8 8542 83.9 8516 83.8 8528
Dualcl 10.0 634 >3600 >132874 13.4 1084 12.5 898 11.0 704 10.2 636
Ex5_4_4 264 3978 >3600 >769562 224 8666 227 6434 221 4618 239 4268
Ex7_3_5 4.02 398 1.78 466 1.80 458 2.00 454 2.02 446 2.51 442
Ex8_5_1 7.48 7836 350 222016 5.77 2982 5.30 2390 7.15 8110 5.88 2970
Himmel16 47.1 3940 264 5100 27.0 4502 27.6 4424 29.1 4222 32.1 4010
Hydro 8.36 740 >3600 >364394 13.0 1396 11.4 1190 9.00 916 7.72 758
Linear 52.0 3858 >3600 >276424 157 11748 175 10412 93.9 6284 76.0 4964
Batch 5.29 26 >3600 >596288 12.8 140 3.14 18 3.05 18 3.05 18
Disc2 2.08 4 >3600 >1060286 1.70 16 1.94 12 1.96 12 1.95 12
Hs119 154 592 >3600 251858 22.0 1482 19.8 1084 17.1 770 16.0 672
Pentagon 222 1290 1.78 1342 1.82 1340 1.80 1336 1.80 1336 1.84 1336
Total 1392 116584 26380 3827854 1246 160756 1277 154138 1210 137950 1253 122058
Av. gain 1.00 0.67 1.13 1.20 1.20 1.22
Note that the Stergiou-based approach offers very bad results
for low values of L. When L increases, the relative gains approach
" to 1.00, this is because the behavior of the adaptive mechanism
§ approach to that of the state-of-the-art strategy, i.e., to apply the
8 contractors in every node of the search tree.
£ The bad results are mainly due to the weaker contractor (i.e.,
b 14 (128) HC4) has little to do with the stronger contractor (i.e.,
% Gl 3BCID+ LRC). We observed experimentally that, in many situa-
2 —#-S0A tions, 3BCID or LRC could have filter a box, however they were
\°° not applied because HC4 did not detect any cluster. The detection
=)

020 —H——+—+—"+—"+—+—+—+—+—+——+—+—

1.00 1.20

factor (time/min_time)

130 140 150

Fig. 1. Performance profile comparing the state-of-the-art solver and our approach
using the best configuration.

Table 5
Comparison among our approach and the Stergiou-based approach.
L (14),L=8 H; H;
Av. gain Tot. time Av.gain Tot. time Av.gain Tot. time
1 1.06 10021 0.38 53785 0.59 28917
2 1.08 10210 0.56 38417 0.75 20702
4 1.08 10153 0.69 29072 0.92 13696
8 1.08 10205 0.79 20296 1.00 10622

one. This decision was made because the contractors 3BCID and
LRC are comparably expensive and both of them are much more
expensive than HC4.

Table 5 reports the average relative gains and the total time
spent by of our approach with the configuration (1,4) and L =8
and by the Stergiou-based approach (heuristics H; and H,) for dif-
ferent values of the parameter L. The average gains are related to
the state-of-the-art strategy.

error of the monitoring mechanism may have a large impact in
the solver performance because the size of the search tree may
be increased enormously. In our approach, this situation does not
occur mainly because each contractor is responsible for detecting
its own clusters.

6. Conclusions

In this work, we present a mechanism for interval-based solvers
that controls the filtering effort by adaptively selecting the set of
contractors that will be applied in each node of the search tree.
The mechanism was primarily conceived for solver users or design-
ers to facilitate their tasks related to selecting the adequate set of
contractors for solving a particular problem. Experiments also
highlight that controlling the filtering during the search may result
in performance improvements for state-of-the-art solvers, such as
Ibex. By both improving the performance of interval-based solvers
and facilitating the tasks of solver designers, our approach can help
simplify the design and improve the performance of expert sys-
tems that require the solving of numerical systems of constraints.

The basic idea of the adaptive strategy consists of increasing the
effort when it is more probable to contract a box while reducing
the effort when it seems to be improbable to perform contraction.
We assume that fruitful contractions occur in nearby revisions or
clusters. The detection of these clusters is carried out by the same
contractors. When a contractor performs a successful contraction,
we consider a cluster to have been found. The cluster ends when
the contractor ceases to be useful. Compared to an adaptation of
the strategy proposed by Stergiou for interval methods, our
approach offers more robust results. We believe that the better

8094 I. Araya et al./Expert Systems with Applications 42 (2015) 8086-8094

performance is mainly due to how, in our approach, each contrac-
tor looks for clusters in which the same contractor may be useful.
In contrast, in the Stergiou-based approach, one contractor (the
weaker one) detects clusters for a second contractor (the stronger
one); thus, an intrinsic relation between the contractors is required
(for instance, a strict relation of consistency).

Our work opens the possibility of including more costly con-
tractors in interval-based solvers, reducing the potential overhead.
For instance, consider contractors that are useless in most cases
but very useful in a few. Thanks to the monitoring mechanism,
the cost of these contractors should be dissipated when they are
useless. Alternately, when they are useful, clusters should be
detected and exploited.

A drawback of our approach is that the user or designer has to
define the monitoring period for each contractor. The monitoring
period should depend on the cost and the effectiveness of the con-
tractor, and in some cases, it may be difficult to choose its value. To
address this problem, we plan to include an automatic and adap-
tive mechanism for setting the monitoring periods for each filter.
This mechanism could be based on information extracted from
the monitoring and/or information extracted from an initial phase
of the search in which all the contractors are applied in each
iteration.

Acknowledgments

Ignacio Araya is supported by the Fondecyt Project 11121366,
Ricardo Soto is supported by the Fondecyt Project 11130459,
Broderick Crawford is supported by the Fondecyt Project 1140897.

References

Araya, 1., Trombettoni, G., Neveu, B. et al. (2010). Exploiting monotonicity in interval
constraint propagation. In AAAL

Araya, I, Neveu, B., & Trombettoni, G. (2012). An interval extension based on
occurrence grouping. Computing, 94, 173-188.

Araya, I, Reyes, V., & Oreallana, C. (2013). More smear-based variable selection
heuristics for ncsps. In IEEE 25th international conference on tools with artificial
intelligence (ICTAI) (pp. 1004-1011). IEEE.

Araya, ., Trombettoni, G., & Neveu, B. (2012). A contractor based on convex interval
taylor. In Integration of Al and OR techniques in constraint programming for
combinatorial optimization problems (pp. 1-16). Springer.

Baharev, A. Achterberg, T., & Rév, E. (2009). Computation of an extractive
distillation column with affine arithmetic. AIChE Journal, 55, 1695-1704.

Baharev, A., & Rév, E. (2009). A complete nonlinear system solver using affine
arithmetic. In IntCP, int. WS on interval analysis, constraint propagation,
applications, at CP conference (pp. 17-33).

Balafrej, A., Bessiere, C., Coletta, R, & Bouyakhf, E. H. (2013). Adaptive
parameterized consistency. In Principles and practice of constraint programming
(pp. 143-158). Springer.

Balafrej, A., Bessiere, C., Bouyakhf, E. H., & Trombettoni, G. (2014). Adaptive
singleton-based consistencies. In AAAI'14: Twenty-eighth conference on artificial
intelligence (pp. 2601-2607).

Belotti, P., Lee, J., Liberti, L., Margot, F., & Wdchter, A. (2009). Branching and bounds
tightening techniques for non-convex minlp. Optimization Methods & Software,
24, 597-634.

Benhamou, F., Goualard, F., Granvilliers, L., & Puget,]. -F. (1999). Revising hull and
box consistency. In International conference on logic programming. Citeseer.
Chabert, G., & Jaulin, L. (2009). Contractor programming. Artificial Intelligence, 173,

1079-1100.

Gleixner, A. M., & Weltge, S. (2013). Learning and propagating lagrangian variable
bounds for mixed-integer nonlinear programming. In Integration of Al and OR
techniques in constraint programming for combinatorial optimization problems
(pp. 355-361). Springer.

Goldsztejn, A. (2005). Définition et Applications des Extensions des Fonctions Réelles
aux Intervalles Généralisés: Nouvelle Formulation de la Théorie des Intervalles
Modaux et Nouveaux Résultats (Ph.D. thesis). University of Nice Sophia Antipolis.

Goldsztejn, A., & Goualard, F. (2010). Box consistency through adaptive shaving. In
Proceedings of the 2010 ACM symposium on applied computing (pp. 2049-2054).
ACM.

Granvilliers, L., & Benhamou, F. (2006). Algorithm 852: Realpaver: An interval solver
using constraint satisfaction techniques. ACM Transactions on Mathematical
Software (TOMS), 32, 138-156.

Hansen, E. (1992a). Bounding the solution of interval linear equations. SIAM Journal
on Numerical Analysis, 29, 1493-1503.

Hansen, E. (1992b). Global optimization using interval analysis. Marcel Dekker inc.

Hladik, M., & Horacek,]. (2014). Interval linear programming techniques in
constraint programming and global optimization. In Constraint programming
and decision making (pp. 47-59). Springer.

Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis.
Springer.

Kieffer, M., Jaulin, L., Walter, E., & Meizel, D. (2000). Robust autonomous robot
localization using interval analysis. Reliable Computing, 6, 337-362.

Lebbah, Y., Michel, C., & Rueher, M. (2007). An efficient and safe framework for
solving optimization problems. Journal of Computational and Applied
Mathematics, 199, 372-377.

Lebbabh, Y., Michel, C., Rueher, M., Daney, D., & Merlet, J.-P. (2005). Efficient and safe
global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis, 42, 2076-2097.

Lhomme, O. (1993). Consistency techniques for numeric csps. In [JCAI Citeseer (Vol.
93, pp. 232-238).

Merlet, J.-P. (2011). Interval analysis and robotics. In Robotics research
(pp. 147-156). Springer.

Misener, R., & Floudas, C. A. (2013). Antigone: Algorithms for continuous/integer
global optimization of nonlinear equations. Journal of Global Optimization, 1-24.

Neumaier, A. (1990). Interval methods for systems of equations (Vol. 37). Cambridge
university press.

Neveu, B., Trombettoni, G., & Araya, I. (2015). Adaptive constructive interval
disjunction: Algorithms and experiments. Constraints, 1-16.

Ninin, J., Messine, F., & Hansen, P. (2014). A reliable affine relaxation method for
global optimization. 40R. http://dx.doi.org/10.1007/s10288-014-0269-0. Issn:
1619-4500, 1614-2411, url: http://link.springer.com/10.1007/s10288-014-
0269-0.

Paparrizou, A., & Stergiou, K. (2012). Evaluating simple fully automated heuristics
for adaptive constraint propagation. IEEE 24th international conference on tools
with artificial intelligence (ICTAI) (Vol. 1, pp. 880-885). IEEE.

Rohn, J. (1986). Inner solutions of linear interval systems. In Proceedings of interval
mathematics 1985, LNCS (Vol. 212, pp. 157-158).

Sahinidis, N. V. (1996). Baron: A general purpose global optimization software
package. Journal of Global Optimization, 8, 201-205.

Sandretto, J., Trombettoni, G., & Daney, D. (2013). Confirmation of hypothesis on
cable properties for cable-driven robots. In New trends in mechanism and
machine science (pp. 85-93). Springer.

Shary, S. (1995). Solving the linear interval tolerance problem. Mathematics and
Computers in Simulation, 39, 53-85.

Stamatatos, E., & Stergiou, K. (2009). Learning how to propagate using random
probing. In Integration of Al and OR techniques in constraint programming for
combinatorial optimization problems (pp. 263-278). Springer.

Stergiou, K. (2008). Heuristics for dynamically adapting propagation. In ECAI (pp.
485-489).

Trombettoni, G., & Chabert, G. (2007). Constructive interval disjunction. In Principles
and practice of constraint programming-CP 2007 (pp. 635-650). Springer.

Trombettoni, G., Araya, I., Neveu, B., & Chabert, G. (2011). Inner regions and interval
linearizations for global optimization. In AAAI

Tucker, W. (2002). A rigorous ode solver and smale’s 14th problem. Foundations of
Computational Mathematics, 2, 53-117.

Van Hentenryck, P., McAllester, D., & Kapur, D. (1997). Solving polynomial systems
using a branch and prune approach. SIAM Journal on Numerical Analysis, 34,
797-827.

http://refhub.elsevier.com/S0957-4174(15)00432-7/h0010
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0010
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0015
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0015
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0015
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0020
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0020
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0020
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0025
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0025
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0035
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0035
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0035
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0045
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0045
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0045
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0055
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0055
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0065
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0065
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0065
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0065
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0075
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0075
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0075
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0080
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0080
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0080
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0085
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0085
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0090
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0095
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0095
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0095
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0100
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0100
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0105
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0105
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0110
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0110
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0110
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0115
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0115
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0115
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0125
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0125
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0130
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0130
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0135
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0135
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0140
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0140
http://dx.doi.org/10.1007/s10288-014-0269-0
http://link.springer.com/10.1007/s10288-014-0269-0
http://link.springer.com/10.1007/s10288-014-0269-0
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0150
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0150
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0150
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0160
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0160
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0165
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0165
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0165
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0170
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0170
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0175
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0175
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0175
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0185
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0185
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0195
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0195
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0200
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0200
http://refhub.elsevier.com/S0957-4174(15)00432-7/h0200

	Adaptive filtering strategy for numerical constraint satisfaction problems
	1 Introduction
	1.1 Related work

	2 Background
	2.1 Intervals
	2.2 The interval-based NCSP solver

	3 Contractors and active constraints
	3.1 Constraint propagation contractors
	3.2 3B-like contractors
	3.3 Linear relaxation-based contractors

	4 The adaptive contraction approach
	4.1 A Stergiou-based adaptive contraction

	5 Experiments
	5.1 Comparison among different frequency configurations
	5.2 Comparison among different values of L
	5.3 Results of the Stergiou-based approach

	6 Conclusions
	Acknowledgments
	References

