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Solving constraint satisfaction problems via constraint programming involves the explo-
ration of a search tree where the potential solutions are distributed. The exploration phase
is essentially controlled by an enumeration strategy that decides the order in which vari-
ables and values are selected to verify its feasibility. This process is known to be quite
important, indeed perfect enumerations can reach a solution without useless explorations.
However, selecting good strategies in advance is quite hard as the effects along the search
are often unpredictable. Autonomous search addresses this concern by proposing to
replace on the fly bad-performing strategies by more promising ones. Strategies are
selected from a quality rank which is generated in function of their performance on the
current solving process. However, the ranking computation is commonly tuned by an opti-
mizer that negatively impacts the performance of the whole resolution. In this paper, we
propose a faster autonomous search approach by integrating a powerful database tech-
nique called skyline. This technique allows us to avoid the use of costly rank functions
and optimizers, accelerating as a consequence the solving process. We report results where
the skyline-based approach clearly competes with previously reported autonomous search
frameworks as well as with classic and more sophisticated heuristics such as impact-based
search and dom=wdeg.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Constraint programming (CP) is a widely employed technology for solving constraint satisfaction and optimization prob-
lems, that has successfully been employed to practical applications in various domains such as robotics [5,39], rostering
[21,29], scheduling [36,7], manufacturing [38,2], supply chains [33,27], allocation [35,10] and bioinformatics [3,1]. This tech-
nology allow users to model a problem as a constraint satisfaction problem (CSP), which can be seen as a formal problem
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representation mainly composed of an n-tuple of variables and an m-tuple of constraints. A CSP is solved once a n-tuple of
values satisfying the constraints is found. The classical procedure for solving CSPs consists in employing a tree-data structure
containing the possible solutions. Then, different algorithms can be used to explore and reach a solution, simple ones such as
the well-known backtracking or more sophisticated ones such as the forward checking and maintaining arc consistency from
the CP technology. In this context, two main phases are performed. The first one, called enumeration, assigns values to vari-
ables generating partial solutions that can be seen as branches of the tree. The second one, named propagation, tries to prune
the tree by filtering from domains those values that do not lead to any solution.

The enumeration phase can be decomposed into two steps, the first one selects a variable from the problem and the sec-
ond one temporarily assign a value to this variable. Both selections are controlled by the variable and value ordering heuris-
tic, which together are known as the enumeration strategy. The enumeration strategy is an essential component of the
solving process. A correct decision may dramatically reduce the solving time. In fact, perfect enumerations can reach a solu-
tion without performing backtracks on the search tree. However, much tuning can be done to choose the correct strategy,
which in practice is a hard task as the performance of strategies is hard to predict. A modern proposal [23], named auton-
omous search (AS), addresses this concern. The idea is to let solvers adapt and control themselves during the solving phase in
order to reach efficient solving processes but avoiding user involvement in tuning. In this way, simpler and powerful solvers
will be available for non-expert users.

During the last two years, promising frameworks have incorporated AS in CP [15,17,30,16,37,14], the goal is to provide
adaptive solvers able to activate the most appropriate strategy on each part of the search tree. Strategies are selected on
the fly from a quality rank and depending on their performance they may be replaced by more promising ones. A choice
function is responsible for measuring the performance of strategies during the resolution. The performance is computed
through several indicators which attempt to reflect the real state of progress in the problem resolution. An optimizer is com-
monly introduced to tune the computation of the choice function for a better rank generation. However, the optimization
process is commonly costly and negatively impacts the performance of the whole resolution.

Considering the aforementioned concern, our research challenge is to boost the CSPs solving process by providing a more
efficient way to rank the enumeration strategies. The main contribution of this paper is the design of an improved AS frame-
work for CP able to reach faster resolution phases. On the one hand, the support of AS allow us to alleviate the burden of user
involvement in solver tuning. On the other hand, the resolution process is enhanced by the integration of a powerful ranking
technique from the database domain named skyline [8]. The use of skyline allows us to obviate the need for costly rank func-
tions and optimizers, as a consequence the whole resolution is accelerated. We report encouraging results where the skyline-
based approach is able to compete with previously reported autonomous search frameworks as well as to classic and more
sophisticated heuristics such as impact-based search and dom=wdeg.

The rest of this paper is organized as follows. Background information about CP and related works is presented in
Section 2. The new approach based on skyline is described in Section 3. Section 4 presents the benchmark problems and
the experimental results. Finally, in Section 5 we conclude.

2. Background information

In this section we briefly survey CSPs. Then, we present the related work.

2.1. Constraint satisfaction problems

A CSP is a formal representation of unknowns namely the variables, and relations among them called constraints.
Formally, a CSP P is defined by a triple P ¼ X ;D; Ch i where:

� X is an n-tuple of variables X ¼ x1; x2; . . . ; xnh i.
� D is a corresponding n-tuple of domains D ¼ d1; d2; . . . ; dnh i such that xi 2 di, and di is a set of values, for i ¼ 1; . . . ;n.
� C is an m-tuple of constraints C ¼ c1; c2; . . . ; cmh i, and a constraint cj is defined as a subset of the Cartesian product of

domains dj1 � � � � � djnj
, for j ¼ 1; . . . ;m.

A solution to a CSP is an assignment fx1 ! a1; . . . ; xn ! ang such that ai 2 di for i ¼ 1; . . . ;n and ðaj1 ; . . . ; ajnj
Þ 2 cj, for

j ¼ 1; . . . ;m.
As an example, let us consider the magic squares problem, which consists in filling a N � N matrix with numbers from 1 to

N2 such that the sums of each row, each column and the two main diagonals are equal. Here, we identify N2 variables
representing the values of the matrix, each one denoted as Xi;j, where i and j correspond to the row and column position

of the value within the matrix, respectively, with i; j 2 f1;Ng. Each variable Xi;j range over the domain f1;N2g and the magic
sum is defined as msum ¼ N � ðN � N þ 1Þ=2. Then, we can formulate the constraints of the problem as follows:

� The sum of rows are magic sum
8i 2 N; msum ¼

Pn
j¼1Xi;j



11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

Fig. 1. A solution of the magic squares problem (N = 5).
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� The sum of columns are magic sum
8j 2 N; msum ¼

Pn
i¼1Xi;j

� The sum of the North-West–South-East diagonal is magic sum
msum ¼

Pn
i¼1Xi;i

� The sum of the South-West–North-East diagonal is magic sum
msum ¼

Pn
i¼1Xi;N�iþ1

� The elements of the matrix are all different1

alldifferent(X1;2;X1;3; . . . ;XN;N).

A solution to this problem can be seen in Fig. 1.

2.1.1. Constraint solving
There exist different variations of CSPs such as dynamic CSP [13], composite CSP [34], weighted CSP [26], fuzzy CSP [18],

and max-CSP [25], among others. In this paper, we focus on finite domain CSPs, which is the classic and most used one.
Algorithm 1 depicts a classic procedure for finite domain CSP solving. The idea is to generate partial solutions until a result
is reached, applying backtracking when inconsistencies are found. The procedure begins with a loop including a set of
instructions to be executed until a solution is found (i.e. all variables are fixed) or no solution is found (i.e. a failure is
detected). Next, the corresponding variable and value are selected to create the branches of the tree. Then, the propagation
is triggered in order to temporarily eliminate from domains unfeasible values. At the end, two conditional statements are
responsible for backtracking. Backtrack allows the algorithm to come back to the previous instantiated variable that has still
a chance to reach a solution, while the shallow backtrack instantiates the current variable with the following available value
from its domain.

Algorithm 1. solveðC;DÞ

1: while (:success) or (failure) do
2: Variable SelectionðDÞ;
3: Value SelectionðDÞ;
4: PropagateCðDÞ;
5: if empty domain in future var then
6: Shallow BacktrackðÞ;
7: end if
8: if empty domain in current var then
9: BacktrackðÞ;

10: end if
11: end while
2.2. Related work

During the last years there is a trend to track the solving process in order to automatically identify good-performing
strategies. Preliminary approaches proposed to sample and learn good strategies after solving a problem. Some examples
in this context were reported in [20,19,40]. Reacting before waiting the entire resolution process is a more recent approach.
For instance [31] proposes the impact-based search. The idea is to compute the impact of variables by measuring their rele-
vance on the search space reduction. In this way, variables with highest impact should be selected first since they are more
likely to reduce the search effort. Another related approach is reported in [9], which proposes to associate weights to con-
straints. Those weights are incremented once constraints lead to the deletion of a variables domain. Then, the weighted
degree (wdeg) of a variable corresponds to the sum of weights of constraints where it is involved. Finally, wdeg can be used
1 The alldifferentðX1; . . . ;XnÞ constraint forces that values assigned to the variables X1; . . . ;Xn must be pairwise distinct [32].
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in conjunction with the domain size to produce the dom/wdeg heuristic, that selects the variable with the smallest ratio cur-
rent domain size to current wdeg.

A different framework but following a similar goal is proposed in [11]. Here, the idea is to select the most appropriate
strategy from a given portfolio for each part of the problem. To this end, strategies are ranked and dynamically selected along
the resolution depending on their performance. The performance is measured by a set of indicators associated to the quality
of the search process. Such a framework has been used as core of different AS related works. For instance, in [15] a hyper-
heuristic approach and a choice function were incorporated in order to perform a better rank generation. The hyperheuristic
operates at a higher level of abstraction than the solver. It decides which strategy is applied next during the search. This deci-
sion is guided by the choice function which evaluates the performance of strategies. Familiar AS-CP frameworks have also
been used for solving optimization problems instead of pure CSPs [30].

The aforementioned AS frameworks, based on a hyperheuristic approach, adaptively rank the enumeration strategies (see
Fig. 2) where the choice function attempts to capture the correspondence between the historical performance of each enu-
meration strategy based on information with regard to performance indicators of the solving process (see indicators used in
Table 1). Then a rank of strategies is generated from which promising strategies are selected for the next step. Here, a deci-
sion point or step is performed every time the solver is invoked to fix a variable by enumeration.

The strategy selected is the one with highest choice function value. Formally, a choice function f in step n for the strategy
Sj is defined as follows.
f nðSjÞ ¼
Xl

i¼1

aif inðSjÞ ð1Þ
where l is the number of indicators, ai is the parameter for controlling the relevance of the ith-indicator in the equation and
f inðSjÞ is the value of the ith-indicator for the strategy Sj at step n. In the current approach, the a parameters are finely tuned
by an optimizer. A sampling phase is performed where the CSP is solved to a given stop criteria such as a given number of
variables instantiated, number of visited nodes, or number of backtracks. Then, the information gathered in this sampling
phase is used as input of the optimizer, which determines the most successful set of a values for the choice function.
CHOOSE
ENUMERATION
STRATEGY

CALCULATE
CHOICE FUNCTION
(RANK ENUMERATION
STRATEGY)
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Fig. 2. AS framework [16].



Table 1
Search process indicators.

Name Description

VFP Number of variables fixed by propagation
n Number of steps or decision points (n increments each time a variable is fixed during enumeration)
TnðSjÞ Number of steps since the last time that an enumeration strategy Sj was used until step nth
SB Number of Shallow Backtracks [4]
B Number of Backtracks
In1 Represents a Variation of the Maximum Depth

It is calculated as: CurrentMaximumDepth� PreviousMaximumDepth
In2 Calculated as: CurrentDepth� PreviousDepth. A positive value means that the current node is deeper than the one explored at the previous

step
B-real Number of backtracks considering also the number of shallow backtracks
d Current depth in the search tree
Thrash The solving process alternates enumerations and backtracks on a few variables without succeeding in having a strong orientation

It is calculated as: dt�1 � VFPt�1
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Optimizers based on genetic algorithms [14,17,37] and particle swarm optimization [16] have been used to tune the
computation of the choice function. This tuning process is very important because the correct tuning of the choice function
weights has a crucial effect on the ability of the solver to properly solve specific problems. Parameter (choice function
weights) tuning is difficult to achieve because the parameters are problem dependent and the best values of parameters
are not stable along the search [28]. The optimal configuration of the choice function is a form of search too and it can be
seen as the resolution of an optimization problem. In this work, we focus on improving the performance of the current
AS approach by replacing optimizers by skylines.

3. The skyline approach

In this section we present our approach to boost AS solvers via skylines. We state that the use of skyline avoids the opti-
mal configuration of the choice function leading to a faster solving process while preserving the quality of results. In the fol-
lowing, we survey briefly skyline and we present the details of our approach.

3.1. Skyline

Selecting the most interesting data with respect to user preferences plays an important role in many real applications
such as multi-criteria decision making. In databases, this is reflected by the top-k retrieval paradigm where a scoring func-
tion f is used to retrieve the k tuples with the highest scores according to f. However, the difficulty in providing f leads to the
adoption of the skyline paradigm [8]. Before the introduction of skyline queries into database research, this problem was
known as the maximum vector problem or the Pareto optimum [24]. In skylines queries data are represented in a d-dimen-
sional data space and a skyline query retrieves those data points that are not dominated by other points. A point dominates
another point if it as good or better in all dimensions and better in at least one dimension. Without loss of generality, we
assume that smaller values are better than larger ones on all attributes. More formally, a point p ¼ ðp½1�; p½2�; . . . ; p½d�Þ defined
over the attribute set D, where p½i� is a value on dimension di, dominates another point q ¼ ðq½1�; q½2�; . . . ; q½d�Þ iff p½i� 6 q½i�
where 1 6 i 6 d and there is at least one dimension j such that p½j� < q½j�. Fig. 3 shows an example of skyline over a small
Fig. 3. A skyline example
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set of points P ¼ fp1; p2; p3; p4; p5gwith jDj ¼ 2. We can see that p2 dominates p1 since both coordinates of p2 are smaller than
that of p1. Thus, p1 cannot be a skyline point. Since p2; p3 and p4 are not dominated by any other points, they are the skyline in
this set of points.

The skyline operator was first introduced in [8], this work proposes the algorithms Block Nested Loop (BNL) and Divide-
and-Conquer (D&C). In particular, BNL compares each tuple of the database with all the others and produces a skyline tuple
only if it is not dominated. D&C partitions the data set into multiple subsets that can fit in memory. Skylines are computed
separately in all partitions and then merged. The Sort-Filter-Skyline (SFS) algorithm [12] is proposed as a variant of BNL that
presorts the data, w.r.t. a preference function, obtaining skyline tuples from the sorted list. A hybrid method named LESS [22]
improves the aforementioned algorithms combining aspects of SFS and BNL. Roughly, LESS sorts the tuples as does SFS and
uses an elimination-filter window acting similarly to the elimination window used by BNL having all of SFS’s and BNL’s bene-
fits with no additional disadvantages.

There are many others algorithms to compute skylines and each of them assures that if a point pi dominates a point pj; pi

is preferable to pj according to any scoring function which is monotone on all attributes [8]. Moreover, for any scoring func-
tion, the skyline always contains the best (the top-1) point that minimizes/maximizes the function.

3.2. Boosting AS for CSPs via skylines

Let us recall that in AS approaches, based on hyperheuristics, the enumeration strategies are evaluated by means of a
choice function composed by l indicators which capture their performance during the solving process. Moreover, a simple
choice function as CF ¼ a1Bþ a2Thrash must be optimized in order to find the best a’s increasing the runtime of the solving
process. Our proposal takes the l indicators, in this case B and Thrash, collected during the solving process and puts its values
in a 2D space where each enumeration strategy can be seen as a 2D point and processed using a skyline algorithm. Fig. 4
shows the skyline of a set of points composed by enumeration strategies described using 2 indicators from Table 1 (B and
Thrash). In this case, enumeration strategies with the lowest number of backtracks (B) and the lowest number of times that
the solving process alternates enumeration and backtracks without succeeding (Thrash) are preferable.

Skyline result is composed of not dominated points which are equally preferable but in the case of AS we must choose an
enumeration strategy to continue with the solving process. We know that in the skyline result we have the top-1 enumera-
tion strategy but we do not know which one is the top-1. This sort of tie has been broken using the number of backtracks (B)
because it is a good measure for the quality of both constraint propagation and enumeration [16]. Moreover, in [6] it has
been shown that the runtime measure is consistent with B. Thus, we sort the skyline result w.r.t. B in increasing order
and we choose the first one.

From all the algorithms proposed in the literature we choose BNL as the most straightforward to compute the skyline
because in the context of AS at most there are dozens of enumerations strategies and our approach does not work with data
stored in files. Thus, our approach does not deal with hard disk issues and the processing of large volumes of data in main
memory. Basically, the algorithm compares each point pi with every other point. If pi is not dominated, then it belongs to the
skyline.

Algorithm 2. solveASðC;DÞ

1: loadModelðÞ;
2: setUpPortfolioðÞ;
3: selectStrategyUsingSkylineðÞ;
4: while (:success) or (failure) do
5: Variable SelectionðDÞ;
6: Value SelectionðDÞ;
7: PropagateCðDÞ;
8: if empty domain in future var then
9: Shallow BacktrackðÞ;

10: end if
11: if empty domain in current var then
12: BacktrackðÞ;
13: end if
14: calculate indicatorsðÞ;
15: selectStrategyUsingSkylineðÞ;
16: end while
From a high level point of view, our approach that includes AS and skyline works as follows (see Algorithm 2). The first
steps fix the solving options, a model containing the variables of the problem, its domains and the constraints are loaded.
A portfolio of enumeration strategies, the indicators of the solving process and the cutoff value (i.e. percentage or number
of fixed variables or number of visited nodes or number of backtracks or number of steps) are fixed. Then, the CSP problem



Fig. 4. Skyline of enumeration strategies.
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is solved until the cutoff value and the best enumeration strategy is selected using the selectStrategyUsingskylineðÞ function.
Once the best enumeration strategy is selected, the CSP problem is solved and at each decision point or step (see
Section 2.2) the performance indicators are captured, the enumeration strategies are evaluated using the
selectStrategyUsingskylineðÞ function and the best enumeration strategy is applied next during the solving process. Finally,
if all the variables have been fixed, a solution is reported.
4. Experimental evaluation

In this Section we provide a performance evaluation of our approach. Experiments have been performed on a 2.33 GHz
Intel Core2 Duo with 4 Gb RAM running Windows Vista, and the benchmarks employed are the following: n-queens (NQ)
with n = {8, 10, 12, 15, 20, 50, 75}, magic squares (MS) with n = {3, 4, 5}, Sudoku, and knight tournament (Kn) with N = {5,
6}. The stop criterion is 65,535 steps, let us recall that a step refers to a request of the solver to instantiate a variable by enu-
meration. A portfolio of 8 enumerations strategies has been used, which is detailed in Table 2.

Tables 3 and 4 present the results measured in terms of number of backtracks, Tables 5 and 6 illustrate the runtime. We
contrast the proposed approach with eight classic enumeration strategies (S1–S8) and three adaptive ones: the best perform-
ing hyperheuristic approach (HH) [16], the impact-based search (IBS) [31] and the dom=wdeg heuristic [9]. At the end, we
also include a random selection strategy. Let us note that the portfolio of the skyline approach is composed of the same eight
aforementioned classic enumeration strategies.

Results show that the skyline approach is able to compete with classic strategies as well as to the more sophisticated HH,
IBS and dom=wdeg. Taking into account the backtracks, for small instances such as n-queens (n = {8, 10, 12}), skyline has a
similar behavior than classic strategies and IBS, being outperformed by dom=wdeg. In the presence of bigger instances of the
n-queens (n = {50, 75}), only two classic strategies are able to solve them (S3 and S7), while skyline succeed by requiring more
backtracks than HH and dom=wdeg, but considerably less than IBS. When solving the magic squares problem with n = 4, sky-
line, HH, and dom=wdeg require a very few backtrack invocations compared to IBS. However, for n = 5, the opposite occurs,
being IBS the fastest one. Now, considering the Sudoku and the hardest instance of the knight tournament, skyline is the one
needing the minor number of backtracks. Finally, in the global backtrack ranking, it is also skyline the one requiring the
minor (average) number of backtracks for solving the complete set of problems.

Considering solving times and small instances of the n-queens (n = {8, 10, 12}), IBS is the fastest one, being HH the slowest
one by far. This can be explained by the cost of the optimizer within the hyperheuristic compared to the more lightweight
Table 2
Portfolio used.

Id Strategy Variable ordering Value ordering

S1 F + ID First variable of the list min. value in domain
S2 AMRV + ID The variable with the largest domain min. value in domain
S3 MRV + ID The variable with the smallest domain min. value in domain
S4 O + ID The variable with the largest number of attached constraints min. value in domain
S5 F + IDM First variable of the list max. value in domain
S6 AMRV + IDM The variable with the largest domain max. value in domain
S7 MRV + IDM The variable with the smallest domain max. value in domain
S8 O + IDM The variable with the largest number of attached constraints max. value in domain



Table 3
Number of backtracks solving different instances of the N-Queens problem with different strategies.

Problem Strategy

S1 S2 S3 S4 S5 S6 S7 S8

NQ(n = 8) 10 11 10 10 10 11 10 10
NQ(n = 10) 6 12 4 6 6 12 4 6
NQ(n = 12) 15 11 16 15 15 11 16 15
NQ(n = 15) 73 808 1 73 73 808 1 73
NQ(n = 20) 10,026 2539 11 10,026 10,026 2539 11 10,026
NQ(n = 50) >27,406 >39,232 177 >26,405 >27,406 >39,232 177 >26,405
NQ(n = 75) >626,979 >36,672 818 >26,323 >26,979 >36,672 818 >26,323
MS(n = 4) 12 1191 3 10 51 42 97 29
MS(n = 5) 910 >46,675 185 5231 >46,299 >44,157 >29,416 >21,847
Sudoku 18 10,439 4 18 2 6541 9 2
Kn(n = 5) 767 >42,889 767 >18,838 767 >42,889 767 >18,840
Kn(n = 6) >19,818 >43,098 >19,818 >19,716 >19,818 >43,098 >19,818 >19,716

Table 4
Number of backtracks solving different instances of the N-Queens problem with different strategies.

Problem Strategy

Skyline HH dom=wdeg IBS Random

NQ(n = 8) 9 6 5 2 5
NQ(n = 10) 6 5 1 10 8
NQ(n = 12) 14 16 6 14 18
NQ(n = 15) 147 11 10 51 98
NQ(n = 20) 89 11 10 12 32
NQ(n = 50) 5025 252 25 166,837 >32,340
NQ(n = 75) 1255 9255 22 266,686 >32,973
MS(n = 4) 10 3 0 110 17
MS(n = 5) 171 74,083 657 149 >39,742
Sudoku 0 826 546 45 250
Kn(n = 5) 1470 667 4060 519,526 >40,022
Kn(n = 6) 370 29,608 222,768 >670,340 >35,336
X 714 9562 19,012 >86,677 >15,070

Table 5
Runtime in ms for different instances of the N-Queens problem with different strategies.

Problem Strategy

S1 S2 S3 S4 S5 S6 S7 S8

NQ(n = 8) 125 125 124 125 125 125 141 124
NQ(n = 10) 125 124 125 125 124 125 125 125
NQ(n = 12) 156 156 156 156 141 140 156 141
NQ(n = 15) 296 2106 124 312 296 2137 125 312
NQ(n = 20) 35,354 7785 156 35,179 34,246 7785 171 34,570
NQ(n = 50) t.o. t.o. 1138 t.o. t.o. t.o. 1154 t.o.
NQ(n = 75) t.o. t.o. 6645 t.o. t.o. t.o. 6505 t.o.
MS(n = 4) 140 109 125 156 296 187 405 218
MS(n = 5) 2919 t.o. 795 17,534 t.o. t.o. t.o. t.o.
Sudoku 156 6271 141 140 156 3338 171 187
Kn(n = 5) 4306 t.o. 4290 t.o. 4305 t.o. 4352 t.o.
Kn(n = 6) t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o.
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computations done by dom=wdeg, IBS, and skyline approaches. When solving, bigger instances of the n-queens (n = {50, 75})
the runtime required by skyline, HH and IBS increases, being dom=wdeg the more rapid one. Then, taking into account
both instances of magic squares and Sudoku, IBS is again the one exhibiting the minor solving time. However, IBS fails
in solving the hardest instance of the knight tournament before the stop criterion, while skyline is the fastest one.
Finally, skyline is the strategy requiring the minor (average) runtime for solving the complete set of problems, followed
by a short difference by dom=wdeg. Charts comparing adaptive strategies in terms of backtracks and solving time are
illustrated in Figs. 5 and 6.



Table 6
Runtime in ms for different instances of the N-Queens problem with different strategies.

Problem Strategy

Skyline HH dom=wdeg IBS Random

NQ(n = 8) 109 1379 213 26 6
NQ(n = 10) 109 1443 233 31 83
NQ(n = 12) 124 1468 246 33 30
NQ(n = 15) 312 1658 252 40 373
NQ(n = 20) 280 3288 277 39 5161
NQ(n = 50) 23,041 23,848 354 9588 t.o.
NQ(n = 75) 9486 37,950 487 23,759 t.o.
MS(n = 4) 124 5080 254 36 56
MS(n = 5) 593 9,849,363 7138 42 t.o.
Sudoku 109 1625 456 44 304
Kn(n = 5) 5093 607,599 695 2,091,627 t.o.
Kn(n = 6) 1763 114,906 36,868 t.o. t.o.
X 3429 887,467 3956 >193,206 >6007

Fig. 5. A skyline example

Fig. 6. Skyline of enumeration strategies.
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5. Conclusions

In this work, we have proposed an improved AS framework that employs skylines to perform adaptive enumeration pro-
cesses. The main goal of skylines is to provide a more efficient and lightweight way to rank the enumeration strategies com-
pared to the costly hyperheuristic used in previous approaches. The proposed skyline-based strategy is able to detect
efficiently bad decisions concerning enumeration strategies allowing the solver to adapt itself while converging to an effi-
cient strategy for the problem being solved. The experimental results illustrates the effectiveness of the proposal, which
combining a portfolio of simple/classic strategies it is able to compete with more sophisticated ones such as the
dom=wdeg, IBS and a hyperheuristic-based one.

In the future, we plan to incorporate adaptive strategies to the portfolio, but finding the balance to avoid increasing the
whole solving. In this way, we will be able to experiment with an interesting adaptive framework which is in turn built of
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adaptive components. Another interesting idea is about the design of a similar adaptive framework for interleaving different
propagation techniques.
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