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Summary

Epitope-based vaccines (EVs) make use of short anti-
gen-derived peptides corresponding to immune epi-
topes, which are administered to trigger a protective
humoral and/or cellular immune response. EVs
potentially allow for precise control over the immune
response activation by focusing on the most relevant –
immunogenic and conserved – antigen regions. Exper
imental screening of large sets of peptides is time-con-
suming and costly; therefore, in silico methods that
facilitate T-cell epitope mapping of protein antigens are
paramount for EV development. The prediction of
T-cell epitopes focuses on the peptide presentation pro-
cess by proteins encoded by the major histocompatibil-
ity complex (MHC). Because different MHCs have
different specificities and T-cell epitope repertoires,
individuals are likely to respond to a different set of
peptides from a given pathogen in genetically heteroge-
neous human populations. In addition, protective
immune responses are only expected if T-cell epitopes
are restricted by MHC proteins expressed at high fre-
quencies in the target population. Therefore, without
careful consideration of the specificity and prevalence of
the MHC proteins, EVs could fail to adequately cover
the target population. This article reviews state-of-the-
art algorithms and computational tools to guide EV
design through all the stages of the process: epitope pre-
diction, epitope selection and vaccine assembly, while
optimizing vaccine immunogenicity and coping with
genetic variation in humans and pathogens.

Introduction

The adaptive immune system comprises two arms: the
humoral immune response, which is mediated by
secreted antibodies produced in B cells, and the cell-
mediated immune response, mainly orchestrated by T
cells. Epitopes are antigenic determinants that are rec-
ognized by B cells (B-cell epitopes) or T cells (T-cell
epitopes). B-cell receptors recognize epitopes exposed
directly on the surface of native protein antigens,
while T-cell receptors (TCRs) recognize epitopes that
are associated with major histocompatibility com-
plexes (MHCs; called human leucocyte antigen (HLA)
in humans) in a phenomenon known as MHC restric-
tion. The interaction of the peptide: MHC complexes
(pMHCs) with TCRs activates T cells, leading to the
stimulation of the adaptive immune response. Two
subpopulations of T cells are involved in epitope rec-
ognition: T-cells bearing coreceptor molecules CD8
(cytotoxic T lymphocytes – CTLs) and CD4 (helper T
lymphocytes – HTLs). CTLs recognize intracellular
peptides presented by MHC class I molecules (CTL
epitopes) and HTL recognize peptides from the extra-
cellular space that are displayed by MHC class II mole-
cules (HTLs epitopes). The knowledge of epitopes
recognized by CTLs and HTLs is critical for the devel-
opment of effective vaccination strategies against infec-
tious diseases (Rosa et al., 2010).
Mass immunization strategies based on most preva-

lent pathogenic serotypes have been historically suc-
cessful; however, more sophisticated approaches are
needed to effectively deal with genetic variation both
in pathogens and in humans. Vaccine design in the
context of genetically heterogeneous human popula-
tions faces two major problems: first, individuals dis-
playing a different set of alleles, with potentially
different binding specificities, are likely to react with a
different set of peptides from a given pathogen; and
second, alleles are expressed at dramatically different
frequencies in different ethnicities. HLA genes are the
most polymorphic in the human genome, with a year-
to-year growing list of HLA alleles, according to the
IMGT/HLA database (Robinson et al., 2015). A
fraction of the HLA alleles contains synonymous
mutations or amino acid differences occurring in
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noncoding regions, leading to the same gene product.
Figure 1 illustrates both the total number of HLA
alleles and the number of distinct HLA proteins for
each locus. This vast diversity represents a significant
challenge for EV design, as demonstrated for example
for HIV (Goulder & Watkins, 2008).
Computational tools can be valuable in dealing with

these issues in vaccine design. Available computational
methods for T-cell epitope vaccine design mostly focus
on the stage of epitope prediction of peptide binding
to MHCs. A lesser number of tools and algorithms
have been developed to guide the selection of putative
epitopes, either by maximizing coverage in the target
population and/or in terms of pathogen diversity, and
to optimize the design of polypeptide vaccine con-
structs.

The epitope-based approach

This approach focuses on the administration of syn-
thetic antigen-derived peptides containing minimal epi-
topes with the potential to trigger humoral (B-cell
epitopes) and/or cellular (T-cell epitopes) immune
responses. Epitope-based vaccines (EVs) offer several
potential advantages over traditional vaccines, includ-
ing the ability to: (i) focus the immune response on
conserved and immunogenic antigen regions, affording
multistrain protection against rapidly mutating patho-
gens; (ii) use multiple epitopes from one or several
pathogens (multivalency), allowing the induction of
large repertoires of immune specificities; and (iii) pre-
cisely control the immune response activation, by stim-
ulating different subpopulations of lymphocytes that
lead selectively to humoral and/or cellular immune
responses (Purcell et al., 2007). Thus far, EVs have
not reached the pharma market; however, a significant
number of clinical trials involving peptide-based strate-
gies are underway (in phase I (270), phase II (224)

and phase III (12) stages in mid-2014) (Li et al.,
2014).
While efficacy in traditional vaccination is usually

correlated with neutralizing antibodies, the combina-
tion of epitopes targeting HLA molecules can yield a
more prominent role for cell-mediated immune
responses, especially important for viruses (Guo et al.,
2011) and intracellular bacteria (Chaitra et al., 2007).
HLA molecules are cell-surface heterodimeric glyco-
proteins. Despite differences in domain organization,
HLA class I and class II molecules shape a peptide-
binding groove that interacts with antigenic peptides
for display to T cells. The groove has several distinct
pockets, in which polymorphic residues give rise to
differential peptide-binding specificities that determine
the antigenic peptide repertoire (Matsui et al., 1994).
Unlike HLA class I, the groove in HLA class II mole-
cules lacks interactions that close it at both ends. Con-
sequently, its ligands are longer (9–22 mers) than
HLA class I ligands (8–11 mers), although a core of
nine residues fits into the groove. Peptides can interact
through different nonameric sequences (registers),
imposing nontrivial complexity to the determination
of binding cores and to the development of algorithms
predicting HTL epitopes.

Immunodominance

When individuals are immunized with a complex anti-
gen, only a small fraction of the peptides – the immu-
nodominant epitopes – are able to elicit T-cell
responses. The immunodominance hierarchies result
from a complex combination of factors, including
T-cell repertoire, antigen processing and presentation.
The unpredictability in the immunodominance hierar-
chy leads to significant impediments in the ability to
rationally design efficient vaccines (Weaver et al.,
2008).

Figure 1. Distribution of the gene polymorphism for the HLA classical loci, both for HLA class I (a, b and c) and HLA class II (DP, DQ and DR).

Stacked bars indicate the number of HLA allelic variants and the number of distinct HLA proteins (in black) according to the IMGT/HLA database

release version 3.19.0 (Robinson et al., 2015).
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The main processing pathway for HLA class I
ligands involves cytosolic degradation of proteins by
the proteasome, followed by transport of the resulting
peptides to the endoplasmic reticulum (ER) by the
transporter associated with antigen processing (TAP),
where they can be loaded onto nascent HLA class I
molecules. The proteasomes are multisubunit ATP-
dependent proteases, with a central role in establishing
the immunodominance hierarchy of CTLs (Chen et al.,
2001). Proteasomes cleave preferentially at the C-
terminal end of the epitopes, but in the ER, the pep-
tides undergo N-terminal trimming. A number of
methods have been developed for prediction of anti-
gen-processing steps preceding HLA class I binding,
including proteasomal cleavage patterns (Saxova et al.,
2003) and TAP transport efficiency (Brusic et al.,
1999; Diez-Rivero et al., 2010). The NetChop tool
predicts proteasomal cleavage sites based on artificial
neural networks (ANNs) (Nielsen et al., 2005). Like-
wise, Peters et al. (2003) developed a matrix-based
method to predict TAP transport efficiency. The
method was subsequently integrated with proteasomal
cleavage prediction and MHC class I peptide-binding
affinity prediction in the web-based computational
tool NetCTL (Larsen et al., 2005). NetCTLpan is a
‘pan-extension’ of NetCTL, allowing its broad cover-
age of MHC class I alleles (Stranzl et al., 2010). The
NetChop tool predicts proteasomal cleavage sites
based on artificial neural networks (ANNs) (Nielsen
et al., 2005).
The MHC class II processing pathway involves anti-

gen protein degradation by the lysosomal–endosomal
apparatus, binding of the resulting peptides to MHCs,
and subsequent transport of the complex to the cell
surface. It has been suggested that antigen properties
related to its processing are the major determinants of
immunodominance, including the antigen tertiary
structure (Carmicle et al., 2007) and protease suscepti-
bility of the sequences flanking the peptide (Godkin
et al., 2001). An alternative point of view, the peptide-
intrinsic model, suggests that spontaneous kinetic stabil-
ity of the pMHC class II complex and peptide loading
onto MHCs dictate immunodominance hierarchies and
the resulting peptide repertoire (Sant et al., 2007).

Epitope-based vaccine design

Focusing epitope selection on most prevalent and well-
characterized HLA molecules allows broad worldwide
coverage in theory (Gulukota & DeLisi, 1996). How-
ever, these proteins are not necessarily prevalent
among minor ethnic populations that are in need of
new vaccination initiatives (Mehra & Kaur, 2003).
Thus, the rational consideration of these phenomena
in the EV design process offers the prospect to
improve population coverage in well-defined ethnic
populations (Shu et al., 2014). EV design pipeline
involves three computational steps (Toussaint &
Kohlbacher, 2009b): (i) epitope prediction: given a set

of antigens, candidate T-cell epitopes are identified
with respect to a set of target HLA alleles; (ii) epitope
selection: the most suitable subset of epitopes is
selected out of the set of candidate epitopes; and (iii)
vaccine assembly: a polypeptide vaccine construct is
assembled from the selected epitopes (Fig. 2).

Epitope prediction

High-throughput T-cell assays are costly and time-con-
suming. Thus, in silico methods for epitope discovery
have become the core subject of immunoinformatics,
focusing on the peptide: MHC binding to predict T-
cell reactivity. These methods can be divided into two
groups: (i) data-driven methods, based on sequence
information; and (ii) structure-based methods, making
use of protein 3D structural information.
Data-driven computational methods have evolved

thanks to the huge amount of experimental peptide
binding data held in public repositories, such as the
Immune Epitope Database (IEDB) (Vita et al., 2014).
Earlier computational methods are allele-specific, not
capable of addressing HLA polymorphism. By con-
trast, a few so-called pan-specific methods are capable
of extrapolating predictions to experimentally unchar-
acterized MHC molecules, making them useful for EV
design (Zhang et al., 2012b). A milestone in this cate-
gory is the ‘pocket profile’ method (TEPITOPE pro-
gram) (Sturniolo et al., 1999), based on the assumption
of an additive effect of specificities of individual pock-
ets. Pocket profiles are matrices based on experimental
testing of the effects of different amino acid side chains
on specific pockets. The method has been made web-
accessible (Propred) (Singh & Raghava, 2001). More
recently, TEPITOPEpan (Zhang et al., 2012a) intro-
duced a pan extension in terms of HLA class II allele
coverage by extrapolating the pocket profiles to other
allotypes sharing similar pockets. Another variant is the
‘virtual pocket’ method, which characterizes pockets in
terms of amino acid environments through energy cal-
culations (Zhao et al., 2003). MultiRTA is based on
thermodynamic principles (Bordner & Mittelmann,
2010). Predivac is based on the specificity-determining
residue (SDR) approach and covers 95% of HLA class
II allotypes (Oyarzun et al., 2013). The ANN-driven
NetMHCPan-3.0 (Lundegaard et al., 2008) and
NetMHCIIPan-3.0 (Karosiene et al., 2013) are state-of-
the-art methods for MHC class I and class II peptide-
binding prediction, respectively, which reach full HLA
allelic coverage (Nielsen et al., 2007).
Structure-based methods infer the physicochemical

compatibility between the MHC molecules and puta-
tive peptide binders. These methods potentially enable
predictions for any MHC allotype based on universal
physical principles. However, they depend on experi-
mentally determined pMHC structures or high-quality
homology models. Atomistic molecular dynamics sim-
ulations are CPU-intensive and too time-consuming to
be applicable for high-throughput screening of T-cell
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epitopes (Flower et al., 2010). Molecular docking pro-
grams balance computational time with accuracy by
employing scoring functions to estimate binding affini-
ties. The EpiDock method (Logean & Rognan, 2002)
was developed for high-throughput prediction of CTL
epitopes from viral genomes using the empirical scor-
ing function Fresno (Rognan et al., 1999). Khan &
Ranganathan (2010) developed pDOCK that can be
applied to any MHC allotype through homology mod-
elling. Another docking-based protocol extrapolates
the predictions to different MHC allotypes by incorpo-
rating a machine learning classifier trained on the
docking solutions (Bordner, 2010). However, a recent
analysis showed that the structure-based methods,
while better than random, are inferior to state-of-the-
art data-driven approaches (Zhang et al., 2010).

Epitope selection

The identification of HLA allele-specific T-cell epitopes
is insufficient for vaccine design, because different
alleles are expressed at dramatically different frequen-
cies in different populations (Fig. 3); people from dif-
ferent ethnic backgrounds are likely to react with a
different set of peptides from a given pathogen. A min-
imal set of promiscuous epitopes that yields the
strongest and broadest immune response must be
selected (Ribeiro et al., 2010).
Current computational methods to guide the EV

design process and to estimate the fraction of individu-

als potentially protected by putative T-cell epitopes are
listed in Table 1. Two classes can be distinguished:
supertype-based and allele-based epitope selection
methods. Supertypes are clusters of HLA molecules
sharing overlapping peptide repertories. The targeting
of supertypes for promiscuous epitopes provides a way
to ensure broad population coverage (Sette & Sidney,
1998). For EV development, only representative alleles
for each supertype have to be considered during the
selection process, drastically decreasing the complexity
of the problem. HLA class I supertypes described by
Sette & Sidney (1999) corresponded to nine groups
covering most of the HLA-A and HLA-B polymor-
phisms. Classifications are generally consistent for
HLA class I, but lack agreement for HLA class II mol-
ecules. Several drawbacks have been reported for the
supertype approach, including skewing of epitope
selection to major alleles and poor performance of su-
pertype-based selection strategies in population con-
texts with diverse HLA backgrounds (Schubert et al.,
2013).
Available bioinformatics tools for EV design based

on the supertype concept include Pepvac (Reche & Re-
inherz, 2005) and Multipred2 (Zhang et al., 2011).
Both methods retrieve population coverage exclusively
for HLA class I alleles, which have been precomputed
according to the HLA allele and haplotype frequencies
for five major ethnic groups in the United States
population (Black, Caucasian, Hispanic, North Ameri-
can Natives and Asian) (Cao et al., 2001). The

Figure 2. Diagram of the T-cell epitope-based vaccine design process. Starting from the target population and antigens, a peptide: HLA binding

prediction method retrieves a set of candidate epitopes (epitope prediction stage), which together with additional information, such as HLA fre-

quencies, population coverage, immunodominance/antigen processing, epitope conservation and coverage of the pathogen variants and sub-

types, is all fed into an algorithm that selects an optimal set of epitopes (epitope selection stage). Finally, an epitope ordering algorithm

assembles the selected peptides into a polypeptide construct (vaccine assembly stage).

© 2015 John Wiley & Sons Ltd

International Journal of Immunogenetics, 2015, 42, 313–321

316 P. Oyarzun & B. Kobe



population coverage depends on the combination of
supertypes predicted to be targeted. Pepvac imple-
ments the profile-based method Rankpep (Reche et al.,
2002) for CTL epitope prediction, while Multipred2
employs NetMHCpan-2.8 (Nielsen et al., 2007) and
NetMHCIIpan-3.0 (Karosiene et al., 2013) as predic-
tion engines for CTL and HTL epitopes, respectively.
Multipred2 retrieves a list of putative promiscuous
T-cell epitopes, which correspond to those peptides
predicted to bind >50% of the alleles in a given super-
type.
Allele-based selection methods include OptiTope

(Toussaint & Kohlbacher, 2009a), Episopt (Molero-
Abraham et al., 2013) and Predivac-2.0 (Oyarzun
et al., 2015). These tools define promiscuous epitopes
as those restricted to many HLA alleles in the target
population, regardless of supertype classification. The
fraction of individuals potentially covered by the
epitopes is determined as a function of specific allele
frequency distributions. OptiTope implements a pipe-
line for HLA class I-restricted EV design, based on
methods for CTL epitope prediction and an optimiza-
tion algorithm based on integer linear programing to
maximize population coverage (Toussaint et al.,

2008). Episopt employs Rankpep as CTL epitope pre-
diction method and population coverage prediction is
delivered for five major ethnic groups in the US popu-
lation, based on HLA allele frequencies described by
Cao et al. (2001). Predivac-2.0 enables HLA class II-
restricted EV design, based on a previously described
method for HTL epitope prediction (Oyarzun et al.,
2013) and implementing a genetic algorithm to
explore epitope combinations maximizing population
coverage. Predivac-2.0 accounts comprehensively for
human genetic diversity through integration with the
Allele Frequency Net Database (AFND) (Gonzalez-
Galarza et al., 2011), allowing ‘ethnicity-oriented’
applications.
A second source of diversity comes from the patho-

gen genomic variation (Sirskyj et al., 2011). A few
algorithms have been reported to explore T-cell epi-
tope combinations that simultaneously optimize HLA
allele and antigen coverage. Vider-Shalit et al. (2007)
reported an evolutionary algorithm to find optimal
combinations of CTL epitopes covering all HLA alleles
and all viral proteins. PopCover (Buggert et al., 2012)
is an iterative procedure that selects a given number
of putative epitopes in a way that maximizes the

Figure 3. Differences in the frequency of various HLA-DR alleles in seven selected populations worldwide The population samples from Chile

(Huilliche ethnicity) and Australia (Cape York ethnicity) are examples of HLA allele frequencies of indigenous populations, while the data from

Mexico, Norway, China, Thailand and Nigeria represent the frequency of mixed populations [allele frequency data from the AFND (Gonzalez-

Galarza et al., 2011)].
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coverage of the viral strain with the smallest number
of T-cell epitopes. Toussaint et al. (2011) reported a
general mathematical formalism for CTL epitope
selection to design universal EVs for highly variable
viruses. These algorithms are not implemented as
computational tools. PopCover focuses on HLA bind-
ing and epitope conservation, while the algorithms
reported by Vider-Shalit et al. and Toussaint et al.
incorporate additional variables such as the probabil-
ity of predicted CTL epitopes to result from proteaso-
mal cleavage of the source antigen. For HTL
epitopes, the prediction of protease cleavage sites is
less developed and has not been incorporated into
algorithms for EV design. A different approach to
cover pathogen diversity is the Mosaic method
(Fischer et al., 2007). It is a genetic algorithm-based
method to generate artificial composite protein
sequences (mosaic proteins), which are optimized to
include a maximal diversity of putative T-cell
epitopes from a set of viral proteins. A recent bench-
mark showed that supertype-based selection had a
poorer performance compared to allele-based selec-
tions, suggesting it should only be used in popula-
tions where supertype clusters are prevalent (Schubert
et al., 2013).

Vaccine assembly

The administration of peptide cocktails containing
short synthetic epitopes has been reported (Nehete
et al., 2001). However, the rapid clearance of the
peptides from the bloodstream due to enzymatic
degradation and the consequent short-lasting activity
is a serious limitation of this strategy. In addition,
nonameric epitopes lack flanking residues that are
potentially important for HLA peptide-binding, pre-
sentation and T-cell recognition. A preferable strategy
is to concatenate T-cell epitopes into linear polypep-
tide constructs composed of contiguous epitope
sequences, with or without spacer sequences.
The computational challenge for T-cell epitope vac-

cine assembly is to optimize the ordering of the epi-
topes in the final polypeptide to ensure favourable
cleavage of the peptides and to minimize junctional
‘neoepitopes’ (Sette et al., 2002). Poly-CTL-epitopes
should provide proteasomal cleavage sites at their
C-termini and their N-termini optimized for TAP
binding. Junctional epitopes interfere with vaccine
function by suppressing immunogenicity of authentic
epitopes. A commonly reported peptidic spacer for
genetic constructs is the GPGPG sequence (Livingston
et al., 2002). The computational algorithm CANVAC
II has been developed to aid the design of junctional
epitope-free polyepitopes (Lee et al., 2010). Given
two authentic epitopes, a target set of MHC-binding
motifs and a range of desired linker lengths, CAN-
VAC predicts spacer sequences with optimal length
and composition. GAIA, a multiepitope peptide
vaccine against HIV, was developed using theT
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proprietary tools EpiAssembler� and VaccineCAD�.
The former allowed the design of extensions of nona-
meric HTL epitopes to contain multiple overlapping
conserved HLA class II binding regions, and the latter
to align the epitopes into a ‘beads-on-a-string con-
struct’ that minimizes junctional immunogenicity (De
Groot et al., 2005). PolyCTLDesigner has been devel-
oped for rational design of polyepitope T-cell antigens
with a special focus on optimizing both amino acid
spacer sequences and the ordering of the epitopes
within the polyepitope (Antonets & Bazhan, 2013).
Given a set of CTL epitopes, the tool predicts binding
affinity to TAP and adds up to three N-terminal flank-
ing amino acid residues, following Peters et al. (2003).
Subsequently, it selects optimal spacer sequences for
each peptide pair in terms of proteasomal cleavage
sites at the C-terminus of the first peptide according to
Toes et al. (2001), while providing the least number
of nontarget junctional epitopes.

Conclusions

HLA polymorphism and the consequent population
coverage are major issues for EV design in the context
of genetically heterogeneous human populations. Pep-
tide vaccination can take into consideration ethnic-
level variations in immune responsiveness. Several
algorithms and computational tools have been devel-
oped to aid the discovery and selection of T-cell epi-
topes with the potential to induce broad immune
responses in target populations. A myriad of computa-
tional methods focuses on T-cell epitope prediction,
but only partially accounts for immunodominance and
antigen processing. In addition, epitope selection and
methods for vaccine assembly are gaining interest in
the scientific community and gradually becoming the
focus of future EV development efforts.
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