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3Instituto de Investigaciones Filosóficas, Bulnes 642, Buenos Aires 1428, Argentina7

4Universidad San Sebastián, Lota 2465, Santiago 7500000, Chile8

(Received 28 May 2015; revised manuscript received 16 August 2015; published xxxxxx)9

We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned
one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to
the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field
through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results
we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle
multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case
when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the
agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of
traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated
by invading fronts.
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I. INTRODUCTION21

Nonlinear systems out of equilibrium exhibit a variety22

of instabilities when the appropriate control parameters are23

changed. By such changes of control parameters the system24

can be placed in a stationary state that is not globally stable.25

One phenomenon in which statistical fluctuations play a26

crucial role in nonequilibrium descriptions is the transient27

dynamics associated with the relaxation from states that have28

lost their global stability due to changes of the appropriate29

control parameters. A quantity in the characterization of30

the relaxation dynamics is the lifetime of such states, i.e.,31

the random time that the system takes to leave the vicinity32

of the initial state. The statistics of these times is described33

by the first-passage-time distribution (FPTD) and the mean34

first-passage time (MFPT) is identified by the lifetime of the35

initial state. There are standard techniques [1] to calculate36

the MFPT for Markov processes; a useful alternative route37

to these techniques focuses on the individual stochastic path38

of the process and extract the FPTD from approximations of39

these paths [2,3]. This stochastic path perturbation approach40

can also be generalized to tackle non-Markov processes [4],41

non-Gaussian noises [5], and stochastic differential equations42

with distributed time delay [6]. From a practical point of43

view, the stochastic path perturbation approach is useful in44

the calculation of the MFPT in situations in which standard45

techniques do not hold straightforwardly, such as in extended46

dynamically systems [7] and in the analysis of the MFPT47

in stochastic partial integro-differential equations (nonlocal48

models) [8,9].49

In the past 20 years there has been much interest in50

the study of nonlocal models in ecology and biology. Most51

of them have been formulated in terms of continuous-field52

evolution equations for densities describing long-distance53

*Corresponding author: caceres@cab.cnea.gov.ar

interactions [10,11]. These interactions can be mediated 54

through vision, hearing, smelling or other kinds of sensing. 55

Therefore, nonlocal effects in nonlinear terms in reaction- 56

diffusion equations may account for the resource’s competition 57

within a certain range. It is worth mentioning studies of 58

bacteria cultures in Petri dishes in which the diffusion of 59

nutrients and/or the release of toxic substances can cause 60

nonlocality in the interactions [12–15]. Moreover, we can 61

mention related works such as the study of traveling-wave 62

solutions of nonlocal reaction-diffusion equations arising also 63

in population dynamics [16]. Other studies refer to the pattern 64

formation phenomena in a model of competing populations 65

with nonlocal interactions [17]. Very recently, plant clonal 66

morphologies and spatial patterns were modeled with nonlocal 67

linear and nonlinear terms in extended systems [18]. Nonlocal 68

dynamics have also been used in nonlinear optics where the 69

space-time evolution of the intracavity field was described 70

by the Lugiano-Lefever model with nonlocal interactions 71

[19]. There are also several works related to neural fields, 72

where nonlocal interactions and noise-induced jumps play 73

an important role in the description of real systems [20,21]. 74

In this paper we focus on the study of the MFPT for a 75

stochastic nonlocal version of the so-called Lotka-Volterra, or 76

Fisher, equation [11,22,23] (due to environmental or thermic 77

fluctuation acting on these types of systems, we include an 78

additive noise in the evolution equation of the field). We are 79

especially concerned with the description of the lifetime of the 80

system (due to the change of stability) from a uniform state to 81

a patterned stationary state near criticality. 82

Depending on the physical parameters of the system, new 83

scenarios may appear; for example, if the value of the diffusion 84

coefficient changes, the stability of the homogeneous state may 85

change because a Fourier vector ke may become unstable. In 86

particular, the situation when the phase of the Fourier mode 87

vanishes ϕ(ke) = 0, for a given value of Fourier wave vector 88

ke, may happen, leading therefore to a critical slowing down 89

of the escape process (lifetime of the unstable state). The 90
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supercritical case ϕ(ke) > 0 was analyzed very recently [8,9],91

but the critical case is much more complex to work out because92

the instability turns out to be nonlinear. On the other hand, the93

essential difficulty describing the relaxation from a state of94

marginal stability [i.e., when ϕ(ke) = 0] is that there is no95

regime in which a linear approximation is meaningful. These96

issues will be resolved in the present work by introducing a97

stochastic multiple-scale expansion, with the application of98

the stochastic path perturbation approach.99

A related work describing a stochastic supercritical bifur-100

cation for local partial differential equations was presented101

recently [24]. In that paper a multiscale perturbation was102

proposed to build a stochastic ordinary differential equation.103

After solving the stationary Fokker-Planck equation for the104

amplitude of the most unstable mode, the influence of the105

noise on the shape of the imperfect supercritical bifurcation106

was characterized by the most probable amplitude. It could107

be very interesting to generalize that approach to the case of108

nonlocal partial differential equations like the one we propose109

to work out in the present paper.110

In Sec. II we show the mathematical model that we use. In111

Sec. III we study the bifurcation point and present a determin-112

istic asymptotic wave-front analysis. In Sec. IV we perform113

the discrete Fourier analysis to study the stochastic model in a114

finite domain, In Sec. V we introduce a minimum coupling ap-115

proximation to tackle the nonlocality of the model with an ap-116

proximation. In Sec. VI we introduce the stochastic multiscale117

perturbation expansion, derive the MFPT using the stochastic118

path perturbation approach, and then compare our results with119

numerical simulations. In Sec. VII we present a summary120

and possible extensions of the program. Extended calculations121

related to the present work are given in the Appendixes.122

II. STOCHASTIC NONLOCAL FISHER EQUATION123

The dynamical model, shown in Eq. (1), takes into account124

the exponential growth of the population, characterized by the125

parameter a, a diffusion constant D, a nonlocal competition126

term proportional to a parameter b, and the interaction kernel127

G(x). We also model environmental or thermic fluctuations128

acting on these types of systems. To take this into account129

we introduce an additive fluctuating Gaussian field ξ (x,t) in130

the dynamics. This is a plausible ansatz when the unspecified131

random contributions are more important at low density (see132

Appendix 3 in [6]). We characterize the strength of the noise133

with a small parameter ε.134

The one-dimensional model takes the form135

∂u(x,t)

∂t
= D

∂2u(x,t)

∂x2
+ au(x,t) − bu(x,t)

×
∫ L

−L

u(x − x ′,t)G(x ′)dx ′ + √
εξ (x,t). (1)

We are interested in the stochastic pattern formation descrip-136

tion of the (positive) density field u(x,t) of Eq. (1), subject137

to periodic boundary conditions in [−L,L]. The random138

characteristics of this stochastic integro-differential equation139

are completely characterized by the statistics of the field ξ (x,t).140

Nevertheless, the first-passage-time problem associated with141

this model is nontrivial due to the characteristics introduced142

by the nonlocal term contribution. In the present study we use143

Gaussian white-noise moments [1,25,26] 144

〈ξ (x,t)〉 = 0, 〈ξ (x,t)ξ (x ′,t ′)〉 = δ(x − x ′)δ(t − t ′).

The nonlocal interaction, i.e., the kernel G(x), is adopted to be 145

symmetric and normalized in the domain of interest [−L,L]. 146

We use a square kernel defined as 147

G(x) = 1

2w
[�(w − x)�(w + x)], (2)

where the step function �(x) = 0 if x < 0 and �(x) = 1 if 148

x > 0. Thus the limit w → 0 reproduces a local interaction 149

and the limit w → L represents a nonlocal interaction in the 150

complete domain [−L,L]. In [13] several types of kernels and 151

their analytical properties were presented. 152

The deterministic version of the model, Eq. (1) with ε = 0, 153

has two homogeneous steady states uSS: {0,a/b}. In the local 154

case those values constitute the unstable and stable fixed 155

points, respectively; note that the nonlocal Fisher model is 156

nonvariational. For the nonlocal case we are interested mainly 157

in the instability that occurs with the fully populated state, i.e., 158

uSS = a/b. This instability can be understood by doing a linear 159

analysis around uSS [see Eq. (22)] and its appearance depends 160

on the growth parameter a, the diffusion constant D, and the 161

Fourier transformation of the nonlocal interaction kernel G(x); 162

these characteristics are analyzed in detail in the following 163

sections. Then, for a given set of parameters [see Eq. (23)], 164

the uniform initial condition uSS becomes unstable, so, due to 165

fluctuations, the dynamics end in a patterned stable solution. 166

We show in Fig. 1 a realization of the stochastic dynamics 167

[Eq. (1)] in the course of time. In addition, in Fig. 2 we 168

also show the evolution of a pure deterministic solution. This 169

figure shows the attractor of the system and the evolution to 170

reach it from the patterned initial condition u(x,0) = 1.0 + 171

0.85 cos(2πx). This graph shows four times t = 0,20,50,150 172

for the deterministic evolution of u(x,t) [Eq. (1) with ε = 0]. 173

As can be seen, the attractor is almost reached (from this 174

FIG. 1. Typical stochastic evolution of the field u(x,t). The initial
condition is u(x,0) ≡ uSS = 1 and the evolution follows Eq. (1) with
ε = 10−2. The physical parameters a,b,D,w,L are chosen in such
a way that the initial condition is marginally unstable (see Tables I
and II). The arrow shows the amplitude of the stochastic evolution
of Fisher’s field at three different times t = 50,75,150, i.e., evolving
from the uniform toward the patterned state.

002100-2



FIRST-PASSAGE TIMES FOR PATTERN FORMATION IN . . . PHYSICAL REVIEW E 00, 002100 (2015)

FIG. 2. Typical deterministic evolution of the field u(x,t). The
initial condition u(x,0) = 1.0 + 0.85 cos(2πx) follows the time
evolution of Eq. (1) with ε = 0. The physical parameters a,b,D,w,L

are the same as in Fig. 1 (see Tables I and II). The arrow shows the
evolution of the amplitude at three different times t = 20,50,150,
showing the approach to the patterned final steady state.

deterministic evolution) at a time around t = 150. Therefore,175

an important point in the description of the pattern formation176

is to investigate its transient stochastic dynamics from the177

stationary uniform initial condition to the final inhomogeneous178

solution. Figure 3 shows the typical histogram of the escape179

times when considering the full dynamics with the addition of180

noise (1). Not only is the MFPT an important quantity to be181

known; also the possible existence of a long-time tail in the182

FPTD will be investigated in the present paper. In the following183

sections we will be interested in the analytical description of184

the MFPT. To do this we introduce a multiscale perturbation185

expansion and use the stochastic path perturbation approach to186

tackle the escape times from a marginal unstable state evolved187

from Eq. (1).188

FIG. 3. Histogram of the escape times from Eq. (1) for 5×104

realizations, using the parameters a,b,D,w,L from Tables I and
II and noise intensity ε = 10−2. The random escape time te is
considered here when the evolution of the stochastic field u(x,t)
reaches, for the first time, a given threshold value, i.e., 	u ≡
[u(x,te)max − u(x,te)min]/2 = 0.275 (see Appendix B).

III. DETERMINISTIC ANALYSIS 189

Before going into the stochastic problem, let us introduce 190

a deterministic analysis associated with the nonlocal Fisher 191

model (1), but for an infinite domain L → ∞. This analysis 192

will help in the understanding of the bifurcation condition 193

and to get insight into the noise-induced transition phenomena 194

mediated by invading fronts. 195

A. Bifurcation diagram 196

The dynamics close to homogeneous stationary states uSS 197

show that spatial instability can set in when the system 198

parameters are changed. For example, in the next section we 199

show the dispersion relation associated with the stationary state 200

uSS = a/b (see Fig. 4). This result is obtained by invoking 201

a discrete Fourier analysis and using periodic boundary 202

conditions in a finite domain L < ∞. 203

In this section we present a continuous Fourier analysis 204

in order to find the bifurcation condition in the space of the 205

parameters of our problem. From Eq. (1) the linear dynamics 206

close to uSS = 0, the unpopulated state, is 207

∂tδu = ∂2
x δu + aδu, (3)

while close to uSS = a/b, the fully populated state, it is 208

∂t δu = ∂2
x δu − a

∫ +∞

−∞
δu(x − x ′,t)G(x ′)dx ′. (4)

To obtain the spectrum (dispersion relation) we take δu(x,t) ∝ 209

eϕt+ikx and substitute it in the time evolution equations above 210

to get the relation between the wave number k and ϕ. We find 211

that the spectrum near the unpopulated state is 212

ϕ(k) = −Dk2 + a (5)

and near the fully populated state is 213

ϕ(k) = −Dk2 − aG(k), G(k) = sin kw

kw
. (6)

In the present work we will be interested in the instability 214

near the fully populated state uSS = a/b (which sets in by 215

the nonlocal interaction). This instability is characterized 216

by the Fourier transform of the nonlocal kernel (2), i.e., 217

G(k) = ∫ +∞
−∞ e−ikxG(x)dx = sin kw

kw
. In order to find when 218

the fully populated state is stable or unstable, we solve the 219

bifurcation conditions 220

ϕ(kc) = 0, dϕ(kc)/dk = 0. (7)

From these conditions we can obtain the bifurcation portrait. 221

From Eqs. (6) and (7) we have the explicit expression for 222

the point of bifurcation when changing the range of the 223

interaction w (see Appendix A), 224

w2
min = −3Dκ

a cos κ
, κ = 3 tan κ. (8)

Therefore, by increasing the value of the nonlocal interaction 225

range w, the fully populated state turns out to be spatially 226

unstable. The fully populated state is spatially stable when 227

w < wmin and at the critical value w = wmin the function ϕ(k) 228

has a maximum at kc [i.e., ϕ(kc) = 0]; when w > wmin the 229

fully populated state is spatially unstable for a finite domain 230

of k (ϕ > 0) (see also Sec. IV and Fig. 4). Note that in Eq. (8) 231

002100-3
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the value of the constant is κ = 4.078 . . . (in the domain of232

interest) and so cos κ < 0.233

B. Wave-front solutions in the nonlocal model234

Traveling-wave-front and monotonic solutions U (z) for235

local Fisher equation exist, with U (−∞) = 1 and U (∞) = 0,236

for all wave speeds c � 2 (in nondimensional units). Unfortu-237

nately, no analytical solutions for the phase-plane trajectories238

have been found for general c � 2, although there is an exact239

solution for a particular value of c (see [11]). For the nonlocal240

Fisher model the situation is even more complex. Nevertheless,241

we can do an asymptotic analysis for a small nonlocal range242

w → 0. This analysis helps in the understanding of the243

complexity of the stochastic problem that we want to solve244

in the present paper.245

Let us consider the deterministic part of Eq. (1) in an infinite246

domain L → ∞. It is convenient at the outset to rescale Eq. (1)247

by writing [note that
∫ ∞
−∞ G(x)dx = 1]248

u→ u

/(
a

b

)
, t → at, x → x

√
a

D
, G→

√
D

a
. (9)

Then our nonlocal Fisher model becomes249

∂u(x,t)

∂t
= ∂2u(x,t)

∂x2

+u(x,t)

(
1 −

∫ ∞

−∞
u(x − x ′,t)G(x ′)dx ′

)
. (10)

In the spatially homogeneous situation the steady states are250

now uSS = 0 and uSS = 1. This suggests that we can look for251

traveling-wave-front solutions of Eq. (10) for which 0 � u� 1.252

If a traveling-wave solution exists it can be written in the form253

u(x,t) = U (z) and z = x − ct , where c is the wave speed to254

be specified; we assume c � 0. Upon substituting this wave255

front into Eq. (10), U (z) satisfies256

cU ′ + U ′′ + U

(
1 −

∫ ∞

−∞
U (z − z′)G(z′)dz′

)
= 0, (11)

where primes denote differentiation with respect to z. A typical257

front is where U at one end, say, as z → −∞, is at one steady258

state and as z → ∞ it is at the other. So we should solve the259

integro-differential eigenvalue problem (11) to find the values260

of c such that a non-negative solution U (z) exists that satisfies261

U (z → ∞) = 0, U (z → −∞) = 1.

This is a highly difficult task, which can be worked out262

asymptotically, as we show next.263

As we commented before, in the limit w → 0 our model264

turns out to be local; therefore, we can use w as a small265

parameter to study asymptotically the front analysis. When266

w 
 1 the integral in Eq. (10) can be approximated by267

∫ ∞

−∞
u(x − x ′,t)G(x ′)dx ′ →

∞∑
n=0

1

(2n)!

w2n

2n + 1
∂2n
x u(x). (12)

If the sum converges, we use the symmetry G(x) = G(−x)268

and normalization of the density G(x). Therefore, Eq. (11)269

can be written as 270

cU ′ + U ′′ + U

[
1 −

(
U + w2

6
U ′′ + O(w4)

)]
= 0. (13)

Introducing the variable V = U ′ in Eq. (13), we can study, up 271

to O(w2), this equation in the (V,U ) phase plane, where 272

V ′ = −[cV + U (1 − U )]

(
1 − w2

6
U

)−1

,

U ′ = V. (14)

This system of equations is valid if |V ′w2/6| 
 U . If this 273

condition is fulfilled the phase-plane trajectories are solutions 274

of 275

dV

dU
= −[cV + U (1 − U )]

V [1 − (w2/6)U ]
. (15)

This system has two singular points for (V,U ), namely, (0,0) 276

and (0,1). A linear stability analysis shows that the eigenvalues 277

λ for the singular points are, for points (0,0) and (0,1), 278

respectively, 279

λ± = 1
2 [−c ± (c2 − 4)1/2] ⇒

⎧⎨
⎩

stable node if c2 > 4
degenerate node if c2 = 4
stable spiral if c2 < 4,

(16)

λ± = 1

2

{
−

(
c + w2c

6

)
±

[(
c + w2c

6

)2

+4

(
1 + w2

6

)]1/2}
⇒ saddle point. (17)

Thus up to O(w2), these results show that there can be 280

trajectories from (0,1) to (0,0) lying entirely in the quadrant 281

U � 0, therefore precluding traveling-wave solutions if c � 282

2
√

aD (in the original dimensional variables). So up to this 283

perturbation O(w2), the slowest transition wave propagation 284

cmin is independent of the nonlocal range w. However, as 285

it is well known, the solution of the front depends critically 286

on the behavior of the support of u(x,t = 0) (see [27]). If 287

we wish to consider larger values of the nonlocal range w we 288

should include the next correction O(w4) in Eq. (13); however, 289

the difficulty in working with the next correction is that a 290

larger phase-space dimension would be required to study the 291

dynamical system. 292

The expression (17) is an acceptable solution for w 
 293√
6
√

D/a (in dimensional variables). For the parameters that 294

we have used to run the stochastic realizations this would mean 295

w 
 0.181 (see Table I). On the other hand, we know from 296

TABLE I. Parameters used in the present work.

Physical parameters Description

a = 1 linear growth rate
b = 1 nonlinear coupling parameter
D = 5.477 33×10−3 diffusion coefficient
L = 1 macroscopic size system
w = 0.7 cutoff in the nonlocal interaction range
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the bifurcation point for uSS = a/b [see Eq. (8)] that in order297

to reach the bifurcation, a minimum value for the range of298

interaction wmin would be required, which makes the previous299

asymptotic analysis more difficult to implement.300

Another alternative to tackling the analysis of front prop-301

agation in nonlocal Fisher models is to use a different kernel302

G(x) in Eq. (10). In particular, if we use the Laplace probability303

density function (PDF) (with mean value w) we can reduce the304

integro-differential Fisher model to a pure differential system305

of higher dimension. This is possible because the Laplace PDF306

is the Green’s function of the operator ∂xx − w−2 [6,15,28];307

however, this approach is beyond the scope of the present308

paper.309

In the present paper we use a square nonlocal kernel G(x)310

and the problem that we want to solve is the stochastic emer-311

gence of a patterned solution from the unstable homogeneous312

state uSS = a/b, which would correspond to the invading wave313

front from a nonmonotonic solution. This is a key question,314

but a mathematically difficult issue. Thus we propose to315

tackle this problem from the triggered-noise analysis of the316

random times to leave the unstable stationary state uSS = a/b317

to reach a patterned final state [in Fig. 1 we have plotted the318

system at the bifurcation point and used the initial condition319

u(x,t = 0) = a/b]. This approach corresponds to the study320

of the first-passage-time distribution for an extended system,321

which is also a very difficult task. Nevertheless, by introducing322

a discrete Fourier analysis we can select the dominant unstable323

Fourier mode ke (with amplitude Ae) and so we can study the324

first-passage time associated with the noise-induced transition325

from the homogeneous mode to the unstable mode ke. This326

is the program of the present work. In order to carry out all327

these calculations, in the next section we introduce a discrete328

Fourier transform in Eq. (1), which is associated with the329

analysis of a finite domain L < ∞ with a suitable boundary330

condition.331

IV. FOURIER ANALYSIS332

As mentioned, in the present analysis we assume periodic333

boundary conditions in the interval [−1,1], i.e., we use a334

domain size L = 1. In order to study the transition from a335

uniform stationary state to a patterned one, we decompose336

Eq. (1) using a discrete Fourier transformation as follows:337

u(x,t) =
∞∑

n=−∞
An(t) exp(iknx),

ξ (x,t) =
∞∑

n=−∞
ξn(t) exp(iknx),

G(x) =
∞∑

n=−∞
Gn exp(iknx),

where kn = nπ , n = 0,±1,±2,±3, . . . , and Gn = ∫ 1
−1 G(x)338

exp(−iknx) dx
2 = 1

2
sin knw

knw
, etc. Noting that

∫ 1
−1 G(x)dx = 1,339

we get G0 = 1
2 and |Gn| � 1. Introducing these series into340

Eq. (1) and using that341 ∫ 1

−1
ei(m+n)πxdx = 2δm+n,0, (18)

we arrive at 342

∂t

∞∑
n=−∞

An(t)eiknx

=
∞∑

n=−∞
[D(ikn)2 + a]An(t)eiknx

− 2b

( ∞∑
m=−∞

Am(t)eikmx

)( ∞∑
n=−∞

GnAn(t)eiknx

)

+√
ε

∞∑
n=−∞

ξn(t)eiknx .

Then, using the orthogonality of the Fourier series, we can 343

write the infinite set of coupled Fourier modes 344

dAn

dt
= (−Dk2

n + a)An − 2b

l=∞∑
l=−∞

An−lAlGl+
√

εξn(t),

〈ξm(t ′)ξn(t)〉 = δm+n,0 δ(t − t ′). (19)

Introducing the usual linear stability analysis u = uSS + 345

u1 with uSS = a/b and u1 = eϕt (
∑∞

n=−∞ Ane
iknx) into the 346

deterministic part of Eq. (1), we get 347

∂tu1 = D∂2
xu1 + au1 − bu1uSS − buSS

∫ 1

−1
u1(x−x ′,t)G(x ′)dx ′

(20)

= D∂2
xu1 + au1 − bu1uSS − 2buSS

( ∞∑
n=−∞

GnAne
ϕteiknx

)
.

(21)

Therefore, the homogeneous state uSS = a/b is unstable under 348

small perturbations of the form 349

u(x,t) = a/b + eϕt+iknx (22)

if 350

ϕ = −Dk2
n − 2aGn � 0. (23)

For the particular kernel we use in the present work (2), 351

the dispersion relation ϕ ≡ ϕ(kn) is shown in Fig. 4. Note that 352

any typical length scale characterizing an abrupt condition for 353

the kernel G(x) (cut off in the range of nonlocal interaction) 354

appears in the final expression of the Fourier transformation 355

Gn. As discussed in detail in [13], an interesting characteristic 356

of this nonlocal dynamics is the appearance of a nontrivial 357

unstable mode, as illustrated in Fig. 1. In Tables I and II we 358

show the corresponding numerical values of the parameters 359

that we use in the present work. 360

TABLE II. Critical parameters used in the present work.

Physical parameters Description

G2 = 1
2

sin 2πw

2πw
Fourier mode of the
square nonlocal kernel

ϕ = −D(2π )2 − 2aG2 = 0 phase at the critical case
using data from Table I
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FIG. 4. Dispersion relation ϕ as a function of n. Equation (23)
is plotted for the parameter values shown in Tables I (solid line).
Note that the supercritical unstable mode in this case corresponds to
n = 2. The dashed line is the result using the same set of parameters
but with the diffusion parameter D = 0.01. For the dashed line, the
uniform state uSS = a/b is stable. The dotted line is the result of
using the same set of parameters but with a lower diffusion parameter
D = 0.0015.

Therefore, depending on the physical parameters of the361

system, new scenarios may appear; for example, if the value362

of the diffusion coefficient changes (due to external agents)363

the stability of the homogeneous state uSS = a/b may change364

[see Eq. (23) and Fig. 4]. In particular, the situation when 365

ϕ(ke) = 0 for a given value of ke may happen, leading therefore 366

to a critical slowing down of the escape process. This critical 367

case is much more complex to analyze because the instability 368

turns out to be nonlinear; then there is no regime in which a 369

linear approximation is meaningful. (See also the next section 370

where we discuss the multiple-scale dynamics of the nonlocal 371

Fisher model in terms of a minimum coupling approximation.) 372

V. MINIMUM COUPLING APPROXIMATION 373

The relations shown in Eq. (19) are the complete set of 374

equations for the evolution of the amplitudes of all modes 375

in the nonlocal problem given by Eq. (1). Solving this set 376

of equations would be a difficult numerical undertaking. To 377

make further progress analytically, we consider the situation 378

near criticality (the onset of the pattern from a homogeneous 379

background). Then we follow standard procedures to derive the 380

expression for the evolution of a single amplitude, say, Ae(t), 381

for which ϕ � 0 (i.e., for the most unstable Fourier mode ke). 382

In this context the approximation consists in assuming that 383

the rest of the amplitudes remain smaller than the unstable 384

amplitude during all the time previous to the explosion of 385

Ae(t). Therefore, we only write a couple of equations for the 386

unstable and the homogeneous modes. 387

When there is only one unstable Fourier wave number 388

ke the deterministic part of the set of equations (19) can be 389

written in a less complex way by separating the dynamics of 390

the homogeneous and the unstable modes 391

dA0

dt
= (a − bA0)A0 − 2b

⎛
⎝AeA−eGe + AeA−eG−e +

∑
j �=0,±e

AjA−jGj

⎞
⎠, (24)

dAe

dt
= [a(e) − bA0(1 + 2Ge)]Ae − 2b

∑
j �=0,e

Ae−jAjGj , (25)

dA−e

dt
= [a(−e) − bA0(1 + 2G−e)]A−e − 2b

∑
j �=0,−e

A−e−jAjGj . (26)

In the symmetrical case, i.e., when Ge = G−e and noting392

that a(e) = a(−e) = (−Dk2
e + a) from Eqs. (24)–(26), we393

can prove that Ae(t) = A−e(t); therefore we could restrict394

the Fourier analysis to the case n � 0, which is equivalent395

to considering the dynamics of the modes in the form396

dA0

dt
= (a − bA0)A0 − 2b

[
Ã2

eGe + Xe

]
, A0(t = 0) ∼ O(1),

(27)

dÃe

dt
= [a(e) − bA0(1 + 2Ge)]Ãe − 2b Ye, Ãe(t = 0) ∼ 0,

(28)

where [with Ãe(t) = √
2Ae(t)]397

Xe ≡
∑

j>0, j �=e

2A2
l Gj � 0, (29)

Ye ≡
√

2
∑

j �={0,e}
Ae−jAjGj . (30)

In accord with our previous assumptions [|Aj (t)|
 |Ae(t)|, 398

j �= 0,e], neglecting in Eqs. (27) and (28) contributions from 399

Xe and Ye gives the minimum coupling approximation (MCA) 400

[13]. Thus considering that O(Xe) and O(Ye) are small 401

perturbations to the dynamics of A0(t) and Ãe(t), the stationary 402

states of Eqs. (27) and (28) are characterized by the equations 403

0 = (a − bA0)A0 − 2bÃ2
eGe, (31)

0 = a(e) − bA0(1 + 2Ge); (32)

then their solutions are 404

A0(∞) = −Dk2
e + a

b(1 + 2Ge)
, (33)

Ã2
e(∞) = (a − bA0)A0

2bGe

=
∣∣1 − Dk2

e

/
a
∣∣ϕ

2(b2/a)|Ge|(1 + 2Ge)2
. (34)

Therefore, from the MCA it is simple to see that for the 405

critical case, when ϕ = (−Dk2
e + 2a|Ge|) = 0, the stationary 406
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solutions are given by407

lim
ϕ→0

A0(∞) → a/b, (35)

lim
ϕ→0

Ãe(∞) → 0. (36)

This means that the MCA cannot be used to predict a value408

for the stationary state Ãe(∞) when ϕ → 0; only by going409

beyond the MCA is it possible to find a value Ãe(∞) �= 0 for410

the critical case (see Appendix B). The growth of the explosive411

mode is independent of the asymptotic value Ãe(∞), therefore412

we can calculate the MFPT using this approach. This means413

that the MCA can still be used to study the stochastic growth414

of the explosive amplitude Ãe(t) for the critical case.415

In Appendix C we present a generalization of the MCA in416

the case when there are two unstable amplitudes Au(t),Ae(t).417

In this case the MCA gives a higher dimension set of coupled418

equations for the dominant modes.419

VI. STOCHASTIC MULTISCALE420

PERTURBATION APPROACH421

By neglecting O(Xe) and O(Ye) in Eqs. (27) and (28),422

simplifying the notation Ãe → Ae, and defining the aux-423

iliary functions F (A0,Ae) ≡ (a − bA0)A0 − 2bA2
eGe and424

Q(A0,Ae) ≡ [a(e) − bA0(1 + 2Ge)]Ae, we can rewrite the425

stochastic versions of Eqs. (27) and (28) in a compact form426

dA0

dt
= F (A0,Ae) + √

εξ0(t), (37)

dAe

dt
= Q(A0,Ae) + √

εξe(t). (38)

Here, as commented before, ξ0(t) is statistically independent427

from ξe(t). If the noise intensity ε is a small parameter we428

can introduce a multiscale perturbation expansion for the429

homogeneous mode A0(t) and the unstable mode Ae(t) in430

the form431

A0(t) = A
(0)
0 + √

εx(t) + εy(t) + ε3/2h(t) + · · · , (39)

Ae(t) = √
εW (t) + εV (t) + ε3/2J (t) + · · · . (40)

Introducing Eqs. (39) and (40) into Eqs. (37) and (38) and432

collecting different orders in ε, we obtain the multiple-scale433

dynamics. For example, for the homogeneous mode A0(t), up434

to O(ε3/2), we get435

O(ε0) ⇒ A
(0)
0 = a/b, (41)

O(ε1/2) ⇒ dx

dt
= −ax(t) + ξ0(t), (42)

O(ε1) ⇒ dy

dt
= −ay(t) − bx(t)2 − 2bGeW (t)2, (43)

O(ε3/2) ⇒ dh

dt
= −ah(t) − 2bx(t)y(t) − 4bGeW (t)V (t).

(44)

436

For the dynamics of the unstable mode Ae(t) we get 437

O(ε1/2) ⇒ dW

dt
= (−Dk2

e + 2a|Ge|
)
W (t) + ξe(t), (45)

O(ε1) ⇒ dV

dt
= (−Dk2

e + 2a|Ge|
)
V (t)

− b(1 + 2Ge)W (t)x(t), (46)

O(ε3/2) ⇒ dJ

dt
= (−Dk2

e + 2a|Ge|
)
J (t)

− b(1 + 2Ge)[W (t)y(t) + V (t)x(t)]. (47)

The multiscale expansion allow us to study by perturbations the 438

stochastic escape process from any unstable state characterized 439

by a set of equations like in (37) and (38). 440

A. Stochastic escape in the supercritical case ϕ > 0 441

In the small noise approximation the stochastic path per- 442

turbation approach consists of obtaining information about the 443

first-passage-time statistics without solving the Fokker-Planck 444

equation. This is done by analyzing the stochastic realizations 445

of the process under study when they are written in terms of 446

Wiener paths. 447

The supercritical case occurs when the phase factor 448

ϕ = (−Dk2
e + 2a|Ge|) > 0. Therefore, the escape process 449

of the unstable mode Ae(t) is dominated by O(ε1/2), i.e., 450

the linear stochastic differential equation (45). Consistently, 451

the homogeneous mode is well described by Eqs. (41) 452

and (42). Due to the linearity of the unstable evolution, the 453

stochastic path perturbation approach can easily be introduced 454

by working out the Wiener realization up to O(ε1/2) [5], for this 455

linear unstable case and in the small noise approximation the 456

first-passage-time statistics are independent of the saturation 457

of the unstable mode [29], i.e., the steady states (33) and (34). 458

In the supercritical case we can interpret the multiscale 459

dynamics in the following form: To O(ε0) the homogeneous 460

modes is the expected state A
(0)
0 = a/b and to O(ε1/2) stochas- 461

tic realizations x(t) correspond to an Ornstein-Uhlenbeck 462

process that will lead to the saturation of the dispersion of 463

the homogeneous mode A0(t � a) = a/b + √
εx(∞) + · · · , 464

where x(∞) is a Gaussian random variable. Concerning 465

the unstable mode, up to O(ε1/2), the realizations W (t) 466

correspond to an exponentially increasing stochastic process 467

(SP), therefore these realizations will lead the dominant escape 468

processes toward the final attractor of the nonlocal Fisher 469

equation (see Figs. 1 and 2). The distribution for the escape 470

times, i.e., the FPTD P (te) to reach a given threshold value 471

Ae ≡ 	u, can be written, using a nondimensional unit of time 472

τe = ϕte, as (see Appendix D and [8,9]) 473

P (τe) = 2K

erf(K)
√

π
exp[−τe − K2 exp(−2τe)],

K = Ae

√
ϕ

ε
, τe = ϕte. (48)

The MFPT is 474

〈τe〉 =
∫ ∞

0
P (τe)dτe � ln(K) + E + ln 4

2erf(K)
, K � 1, (49)
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where E is the Euler constant. Note that the general solution475

of the escape problem (for the supercritical case) has been476

written in terms of the nondimensional parameter (group) K =477

Ae

√
ϕ/ε; the group K explicitly depends on the diffusion con-478

stant D through the phase parameter ϕ = −Dk2
e − 2aGe > 0.479

B. Stochastic escape at the critical point ϕ = 0480

Before going into any mathematical detail we point out481

that the MCA does not allow us to get, for the critical case,482

the value of Ae(t = ∞); however the MCA indeed describes483

very well the growth of the explosive mode Ae(t < ∞) when484

the perturbation is taken to O(ε1). The critical case happens485

when ϕ = −Dk2
e + 2a|Ge| = 0, therefore from (41)–(44) and486

(45)–(47) we realize that a drastic change in the short-time487

evolution of the unstable mode will occur. The important488

point is therefore to solve properly the unstable escape, which489

is now controlled by both realizations W (t) and V (t). The490

solution of W (t) is now a Wiener path. Therefore, if we491

only take into account corrections to O(ε1/2) the MFPT is492

scaled down as a random-walk process. This perturbation is493

not enough to characterize the dynamics of the unstable mode494

Ae(t), therefore we need to go one step further and solve the495

realizations of the SP V (t). We can also see that to O(ε1)496

the stochastic perturbation is nontrivial and with a multiplica-497

tive character, therefore we choose from now on, if necessary,498

the Stratonovich calculus.499

For the critical case (ϕ = 0) the dynamics up to O(ε1) are500

reduced to501

A0(t) ⇒ dx

dt
= −ax(t) + ξ0(t)

⇒ dy

dt
= −ay(t) − bx(t)2 − 2bGeW (t)2 (50)

and502

Ae(t) ⇒ dW

dt
= ξe(t)

⇒ dV

dt
= −b(1 + 2Ge)W (t)x(t), (51)

showing that A0(t) is dominated by an additive noise, but Ae(t)503

by a nontrivial multiplicative SP. Note that up to O(ε1/2) the504

escape time is controlled by the Wiener SP W (t), which will505

not give a good description because the MFPT would be as in506

a random walk.507

Perturbations up to O(ε1)508

The homogeneous mode is simple to solve in the spirit of509

the stochastic path perturbation approach. First we note that for510

t → ∞ the SP x(t) saturates to its stationary state; therefore511

we can introduce the notation 
 to characterize the random512

variable x(∞) = 
, which, in addition, is characterized by513

the normal PDF514

P (
) = exp
(−
2

/
2σ 2




)
√

2πσ 2



, σ 2

 = 1

2a
, 
∈ (−∞,∞). (52)

Using that x(t) is the Ornstein-Uhlenbeck SP and W (t) is the515

Wiener SP [uncorrelated because they come from stochastic516

integrals of ξ0(t) and ξe(t), respectively] we could approximate517

(43), for at � 1, by 518

{x(t) � 
} ⇒ dy

dt
� −ay(t) − b
2 − 2bGeW (t)2. (53)

In this approximation the realization of y(t) can be written in 519

the form 520

y(t) � −b
2

a
(1 − e−at ) + 2b|Ge|�(t). (54)

Nevertheless, we do not need to use realizations y(t) to study 521

the escape problem. Note that here �(t) is a non-Gaussian SP 522

characterized by 523

�(t) =
∫ t

0
e−a(t−t ′)W (t ′)2dt ′. (55)

Then all the moments and correlations of the SP �(t) can be 524

calculated using Wiener paths (see Appendix E). 525

Now we proceed to solve up to O(ε1) the dynamics of the 526

unstable mode Ae(t). In this case we can approximate (51), for 527

at � 1, by 528

{ϕ = 0,x(t) � 
} ⇒ dV

dt
� −b(1 + 2Ge)W (t)
. (56)

Thus defining β ≡ b(1 + 2Ge) > 0 we can approximate the 529

realization of SP V (t) by 530

V (t) � −β
�(t), (57)

where �(t) is a Gaussian SP defined in terms of a Wiener 531

integral 532

�(t) =
∫ t

0
W (t ′)dt ′. (58)

Thus any realization V (t) is characterized by the Gaussian 533

SP �(t). In particular, the first and second moments can be 534

calculated straightforwardly (similar calculations are shown 535

in Appendix E) 536

〈V (t)〉 = 0,

〈V (t)2〉 = β2〈
2〉
∫ t

0
dt1

∫ t

0
dt2 min(t1,t2) = β2

2a

t3

3
. (59)

Therefore, up to O(ε1) the realizations of A0(t) and Ae(t) can 537

be analyzed. First we note that V (t) grows faster than y(t), 538

which shows the explosive character of the unstable mode 539

Ae(t) when it is compared with the growth of the homogeneous 540

mode A0(t). In fact, for the homogeneous mode we get that 541

A0(t) � b/a + √
εx(t) + εy(t) + · · · , (60)

where 542

〈x(t)〉 = 0, 〈x(t)x(s)〉 = 1

2a
(e−a|t−s| − e−a(t+s)). (61)

In (60) the SP y(t) can be approximated by Eq. (54), thus we 543

can calculate its mean value, etc. (see Appendix E). 544

For the unstable mode we get 545

Ae(t) � √
εW (t) + εV (t) + · · · , (62)

where, for example, 546

〈W (t)〉 = 0, 〈W (t)W (s)〉 = min{t,s}, (63)

〈V (t)〉 = 0,
√

〈V (t)2〉 =
√

β2

6a
t3. (64)

Here the SP V (t) is approximated for at � 1 by Eq. (57). 547
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From (50) it is possible to see that at short times the SP y(t)548

decreases, but because Ge < 0 the process may grow due to the549

contribution of the square of the Wiener SP. On the other hand,550

the evolution of the unstable mode can also be interpreted:551

At the origin of time t = 0 the mode is null and then at552

short time Ae(t ≈ 0) it starts to growth as a Wiener process.553

After this regime the nonlinear contribution [proportional to554

x(t)W (t)] fluctuates with mean value zero, but grows faster555

that the Wiener SP [
√

〈W (t)2〉 ∼ t1/2 and
√

〈V (t)2〉 ∼ t3/2].556

We note here that the next order of perturbation O(ε3/2) can557

be analyzed in a similar way, showing in addition much more558

complex stochastic dynamics that could also be solved, in559

some approximation, in the context of the stochastic path560

perturbation approach.561

C. Calculation of the MFPT (passage times for the critical case)562

Equation (57) characterizes the random escape times te; to563

see this we use the scaling of the Wiener process. First we564

write a threshold value Ve ≡ V (te) in the form565

Ve = −β
�(te), β ≡ b(1 + 2Ge). (65)

Then, using Wiener paths in (58), we can prove, in the566

distribution, the following scaling for the SP �(t):567

�(te) =
∫ te

0
W (t ′)dt ′ � t3/2

e

∫ 1

0
W (s)ds ≡ t3/2

e �, (66)

where � ≡ �(1) = ∫ 1
0 W (s)ds is a random variable charac-568

terized by the normal PDF569

P�(�) = exp(−�2/2〈�2〉)√
2π〈�2〉

,

〈�2〉 = 1

3
, � ∈ (−∞,∞). (67)

Now using the scaling (66), we can invert (65). This will give a570

mapping for the random escape times te from the set of random571

variables 
,�:572

t3
e =

(
Ve

β
�

)2

=
(

Ae/ε

β
�

)2

. (68)

In the second line we have used Eq. (40), i.e., the multiple-573

scaling expansion to O(ε1), so here Ae is a given threshold574

value Ae ≡ 	u. Noting that {
,�} are statistically indepen-575

dent random variables and using (67) and (52), we can now576

calculate the MFPT taking the average of (68),577

〈te〉 =
〈(

Ae/ε

β
�

)2/3〉
P�P


= ε−2/3

(
Ae

β

)2/3〈( 1




)2/3〉
P


〈(
1

�

)2/3〉
P�

= ε−2/3

(
Ae

b(1 + 2Ge)

)2/3(
�(1/6)√

π21/3

)2

(6a)1/3. (69)

In Table III we show a comparison of the theoretical prediction578

for the MFPT (69) against numerical simulations using the579

threshold value 	u = 0.275 (see Appendix B and Fig. 1). In580

TABLE III. Mean first-passage time.

Noise intensity Theoretical MFPT Numerical MFPT

ε = 10−3 561 544.2
ε = 5×10−3 192 222.6
ε = 10−2 120 128.5
ε = 5×10−2 41 15.04
ε = 10−1 26 3.77

Fig. 5 we present a plot showing the predicted scaling with the 581

noise intensity ε. 582

We note that having worked the stochastic perturbation 583

up to O(ε1) has modified the scaling of the MFPT with the 584

noise intensity, i.e., now we get 〈te〉 ∼ ε−2/3, which is slower 585

than the scaling that we would have obtained working up 586

to O(ε1/2), i.e., a random-walk process predicting the scaling 587

〈te〉 ∼ (Ae/
√

ε)2 ∝ ε−1. Comparing the behavior (69) with the 588

one for the supercritical case (49), 〈te〉 ∼ ln( 1
ε
), we can see the 589

occurrence of a critical slowing down when the phase factor 590

reaches the null value ϕ = 0. 591

D. Calculation of the FPTD for the critical case 592

A crude approximation for the FPTD can be calculated from 593

(68) when this map is written in the form of a random variable 594

transformation law from the set of random variables {
,�} to 595

the random time te, i.e., 596

P (te) = 2
∫∫ ∞

0
P
(
)P�(�)δ

(
te −

(
Ae/ε

β
�

)2/3
)

d
d�,

te � 0

= 2
∫∫ ∞

0
P
(
)P�(�)

δ(
 − 
′)
|J | d
d�,

where |J | is the Jacobian of the transformation and 
′ = 597

Ae/t
3/2
e εβ� is the root of the mapping (68). Performing the 598

FIG. 5. The MFPT for the critical case from Eq. (69) as a function
of the noise intensity ε. The values of the parameters that we have
used are shown in Tables I and II; Ae = 	u = 0.275. The line is the
predicted scaling law ε−2/3.
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FIG. 6. A log-log plot of the escape time probability distribution
(for the critical case) from Eq. (70) as a function of time te. The
values of the parameters that we have used are shown in Tables I and
II; Ae = 	u = 0.275 and ε = 10−2. The histogram from numerical
simulations is also included for comparison with the predicted
long-time tail.

algebra, we arrive at599

P (te) = 2
∫ ∞

0
P
(
′)P�(�)

d�

|J |

= 6Ae

εβt
5/2
e

√
3a

2π2
K0

[
Ae

√
6a

εβt
3/2
e

]
,

β ≡ b(1 + 2Ge), (70)

where K0[z] is the K Bessel function of order 0. Using the600

asymptotic result K0[z → 0] → ln(2/z) − E, where E is the601

Euler constant [30], we get the long-time tail in the asymptotic602

behavior of the FPTD603

P (te → ∞) ∝ ln te

t
5/2
e

. (71)

The map (68) is an approximation for at � 1 and small604

noise. In fact, this mapping gives a quite good result for605

the calculation of the MFPT at the critical point, as shown606

in Table III and Fig. 5 [the long tail (71) dominates this607

calculation]. Nevertheless, we cannot expect that the FPTD608

given by (70) would be a good description at short times (see609

the histogram in Fig. 3). We also note that the escape time610

at the critical point does not depend explicitly on the value611

of the diffusion constant D (this is so because the phase ϕ612

is null). Figure 6 shows a log-log plot of the FPTD (70) to613

emphasize its long-time tail; the agreement with the numerical614

simulations (using 5×104 realizations) can also be seen.615

To end this section let us note that the FPTD P (te) can be616

written using a nondimensional unit of time in the form617

P (τe) = 3Q

πτ
5/2
e

K0

[
Q

τ
3/2
e

]
,

Q ≡ Ae

√
6aβ

ε
, τe = βte. (72)

Thus, up to a perturbation of O(ε1) the general solution for the618

escape problem (at the critical point) can be written in terms619

of a nondimensional group Q that depends on the nonlinear620

parameter b. We note this result against the FPTD in the 621

supercritical case ϕ > 0; there the distribution does not depend 622

on the parameter b because the instability is linear. On the other 623

hand, as we pointed out before, in the supercritical case the 624

MCA does indeed allow the calculation of the stationary value 625

Ae(∞), a situation that cannot be achieved in the critical case 626

ϕ = 0 [see Eqs. (35) and (36)]. Therefore, our solution (72) 627

for the FPTD in the critical case must be handled using Ae as 628

a threshold value 	u. We show in Appendix B that only by 629

going beyond the MCA is it possible to find the stationary state 630

Ae(∞). We made numerical simulations (in real space-time) 631

for the histogram of the escape times of the field u(x,t) through 632

a given threshold value 	u = 0.275, using the time evolution 633

of the nonlocal Fisher equation (1). In Table III and Fig. 5 634

we show the agreement with the theoretical prediction of the 635

MFPT vs noise intensity and in Fig. 6 we show the agreement 636

with the predicted long-time tail of the FPTD. 637

In addition, from the nondimensional solution presented 638

in Eq. (72) it is simple to study the dispersion of the random 639

escape times. In fact, we can calculate σ 2 ≡ 〈τ 2
e 〉 − 〈τe〉2; then 640

it is possible to show that this dispersion grows as a function 641

of the universal parameter Q. A quantity that is more relevant 642

for this statistical analysis is the relative dispersion σ/〈τe〉; this 643

statistical indicator is bounded as a function of Q. This result 644

indicates that the MFPT gives a good description of the pattern 645

formation (for the critical case) as a function of the universal 646

parameter Q. 647

VII. CONCLUSION 648

In this work we have presented a general approach to tackle 649

the problem of the characterization of the mean first-passage 650

time from an initial homogeneous unstable state towards a final 651

patterned stable attractor. In particular, we applied this general 652

approach when the evolution is associated with stochastic 653

integro-differential spatial dynamics as in the Fisher-like 654

equation. The theory is based on the technique of scaling 655

down Wiener integrals (i.e., the stochastic path perturbation 656

approach) with the additional implementation of the minimum 657

coupling approximation in the context of the Fourier analysis. 658

This approximation allowed us to study analytically the 659

random escape times from an initial unstable state. 660

We have introduced a stochastic multiple-scale analysis that 661

is a fundamental tool that allow us to undertake the random 662

escape problem by introducing perturbations to any nonlinear 663

instability. The critical case (ϕ = 0), when the phase of the 664

Fourier perturbation is zero, has been solved analytically and 665

compared with numerical simulations of the field u(x,t) in 666

real space-time. Despite the many approximations that we 667

have introduced, the predictions for the MFPT are in good 668

agreement with the numerical simulations. In addition, we 669

have shown the existence of a universal (group) parameter Q 670

that characterizes the FPTD in a nondimensional unit of time 671

τe = βte. This universal parameter Q ≡ Ae

ε

√
6aβ is different 672

from the universal (group) parameter K ≡ Ae

√
ϕ/ε for the 673

supercritical case [compare Eqs. (72) and (48)]. 674

In addition to the stochastic analysis that we have presented 675

to describe the pattern formation in the nonlocal Fisher 676

equation (when the fully populated state turns out to be 677

unstable due to the nonlocal interaction) we have presented 678
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an exact deterministic analysis to study the bifurcation point679

for the stationary state uSS = a/b (i.e., we found a minimum680

value for the range wmin =
√

−3κ2/ cos κ
√

D
a

). Also, the681

occurrence of wave fronts between the unpopulated and the682

fully populated states has been studied. In particular, we carried683

out an asymptotic perturbation analysis to study the critical684

velocity of the front cmin = 2
√

aD + O(w4), when the range685

of the nonlocal kernel is small (using a square kernel function).686

Another model of kernels would allow a simpler analysis of687

the front propagation.688

To end this section we comment that if the noise would689

appear in some physical parameter, for example, if the growth690

rate changes in the form a → a + ξ (x,t), the stochastic691

problem turns out to be of multiplicative character, which is692

different from the equation (1) that we have worked out in the693

present paper. These types of problems can also be properly694

tackled using the present stochastic multiscale expansion. We695

are confident that our theoretical approach to solve the mean696

first-passage time may help in the general understanding of697

the pattern formation in complex systems where the nonlocal698

interaction (considering a range of interaction) plays an699

important role in the description of real systems. In addition,700

the present stochastic multiple-scale approach may also help701

to solve a quite different but related problem: the study of702

zero-dimensional dynamical systems with distributed time703

delay. These types of situations can be of interest in the study704

of pattern formation in biological models [28,31].705
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APPENDIX A: BIFURCATION POINT709

FOR THE STEADY STATE uSS = a/b710

The bifurcation point wmin associated with the steady state711

uSS = a/b can be calculated from Eqs. (6) and (7) to obtain712

ϕ(kc) = −Dk2
c − a

sin kcw

kcw
= 0, (A1)

ϕ′(kc) = −2Dkc − a

(
cos kcw

kc

− sin kcw

k2
cw

)
= 0. (A2)

Solving sin kcw/k2
cw from Eq. (A1) and introducing this713

expression in Eq. (A2) we get714

Dk2
c

a
= −1

3
cos kcw; (A3)

however, from Eq. (A1) we can write715

Dk2
c

a
= − sin kcw

kcw
. (A4)

By defining kcw ≡ κ and comparing Eqs. (A3) and (A4) the716

following condition should be fulfilled:717

3 tan κ = κ, κ ∈ (0,2π ).

Thus, from Eq. (A3) we can write718

Dκ2

aw2
= −1

3
cos κ,

from which the bifurcation point is characterized by 719

wmin =
√

−3κ2/ cos κ

√
D

a
. (A5)

In nondimensional units (see Sec. III B) there is only one 720

free parameter w, so the bifurcation is characterized by a 721

point: the minimum value of the interaction range wmin = 722√
−3κ2/ cos κ = 9.1760 . . . . For values in the range w > 723

wmin the dynamics of the system are of the supercritical case. 724

APPENDIX B: UPPER BOUND OF Ae(∞) 725

AT THE CRITICAL POINT 726

We have already commented that at the critical point ϕ = 0, 727

the MCA does not allow us to calculate the stationary state 728

of the amplitude Ae(∞). Here we show that only by going 729

beyond the MCA could we get a value for this amplitude. This 730

can be done by analyzing the full Fourier set of deterministic 731

equations (19) under an effective approach and invoking a 732

small-amplitude approximation. 733

In analogy with the deterministic structure of the set of 734

equations (24)–(26), we assume here that there is only one 735

unstable mode ke. Then we can characterize the stationary 736

amplitudes by the set of equations (in the symmetric case 737

Ae = A−e) 738

0 = (a − bA0)A0 − 2b
[
2A2

eGe + Xe

]
, (B1)

0 = [a(e) − bA0(1 + 2Ge)]Ae − 2bYe, (B2)

0 = [a(m) − bA0(1 + 2Gm)]Am − 2bYm, m �= {0,e}, (B3)

where Xe, Ye, and Ym are given by 739

Xe ≡
∑

l>0,l �=e

2A2
l Gl > 0, (B4)

Ye ≡
∑

l �={0,e}
Ae−lAlGl, (B5)

Ym ≡
∑

l �={0,m}
Am−lAlGl. (B6)

Noting that Ge < 0 and Gl > 0 ∀l �= {0,±e}, we can find 740

the dominant solutions of Eqs. (B1)–(B3) in the following 741

way. Apart from any possible (but small) solution Am(∞) 742

from (B3), at the critical point [a(e) − b( a
b
)(1 + 2Ge)] = 0 743

the system of equations (B1)–(B3) has a solution if 744

A0 = a/b,

2A2
e = −Xe/Ge,

Am ∼ 0,

Ym ∼ 0,

Ye = 0.

The last two conditions can be accepted by invoking a sort 745

of null compensation in the sum of small-amplitude modes. 746

Then, from (B1), noting that Ge < 0, we arrive at the important 747

conclusion 748

A0|ϕ=0 = a/b, (B7)

Ae|ϕ=0 =
√∑

l>0,l �=e A2
l Gl

|Ge| . (B8)
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From this result we can see that the value of Ae(∞) is beyond749

the MCA because it is of O(Xe), as we had pointed out before.750

An upper bound for Ae can be obtained by using751

Parseval’s identity. Let uSS(x) be a inhomogeneous determin-752

istic stationary state of the Fisher nonlocal equation (1),753

uSS(x) = u(x,t = ∞) = A0 +
∞∑

n=−∞
An exp(iknx)

= A0 +
∞∑

j=1

2Aj cos(kjx). (B9)

Note that the cosine expansion is not really true for u(x,t)754

during the transition when there is noise. In the stationary755

state we can write756

C ≡ 1

2

∫ 1

−1
uSS(x)2dx =

∞∑
j=−∞

A2
j =A2

0 + 2A2
e +

∑
j>0,j �=e

2A2
j .

(B10)

From Eq. (B8) and because in the symmetric case 0 < Gj < 1757

for j �= e, we get758

A2
e |Ge| =

∑
l>0,l �=e

A2
l Gl �

∑
l>0,l �=e

A2
l = (

C − A2
0 − 2A2

e

)/
2.

Then we finally arrive at the upper bound759

Ae �

√
C − A2

0

2(1 + |Ge|) �
√

C − (a/b)2

2(1 + |Ge|) . (B11)

Thus, if we calculate C numerically from Eq. (1) with ε = 0,760

the inequality (B11) provides the upper bound we were761

seeking for the amplitude Ae(∞) at the critical point. We762

have measured numerically C from the stationary state of763

the deterministic Fisher nonlocal equation (see Fig. 2). For764

the critical parameters that we have used (see Table I and II)765

we get C � 1.05, therefore from (B11) we get 2Ae � 0.300766

[the factor 2 can be considered a threshold value from a767

cosinelike expansion (B9)]. Then, in our simulations the MFPT768

was calculated using the threshold value 	u ≡ [u(x,te)max −769

u(x,te)min]/2 = 0.275.770

APPENDIX C: THE MCA FOR THE CASE771

OF TWO UNSTABLE FOURIER MODES772

In the symmetric case Gn = G−n, considering a situation773

when there are only two unstable modes Ae(t) = A−e(t) and774

Au(t) = A−u(t) in (19) and the rest of the modes An ∀n �=775

{e,u,0} are of small amplitude, we can write a Fourier coupled776

system of equations in the form777

dA0

dt
= (a − bA0)A0 − 2b

[
2A2

eGe + 2A2
uGu + Be

]
, (C1)

dAe

dt
= [a(e) − bA0(1 + 2Ge)]Ae−2b[Ae−uAuGu+Ee],

(C2)

dAu

dt
= [a(u) − bA0(1 + 2Gu)]Au−2b[Au−eAeGe+Eu],

(C3)

where [a(e) − bA0(1 + 2Ge)]A0=a/b ≡ ϕe � 0 and [a(u) − 778

bA0(1 + 2Gu)]A0=a/b ≡ ϕu � 0 are the Fourier phase factors 779

of the unstable modes. On the other hand, 780

Be =
∑

j>0,{j �=e,u}
2A2

jGj > 0,

Ee =
∑

j �={0,e,u}
Ae−jAjGj ,

Eu =
∑

j �={0,e,u}
Au−jAjGj .

Therefore, because only Ge and Gu are negative we can neglect 781

all terms proportional to Gj with j �= {e,u} in (C1)–(C3). Thus 782

we can conclude that this set of equations represents the MCA 783

for the case when there are two unstable modes. This MCA 784

predicts a nontrivial interaction between the modes Ae and Au 785

that must be worked out with some effective approximation 786

for the small amplitude A|e−u|. 787

APPENDIX D: CALCULATION OF THE MFPT 788

IN THE SUPERCRITICAL CASE 789

Using that ϕ > 0, from Eqs. (42) and (45) we can write 790

both stochastic realizations in the form 791

x(t) =
∫ t

0
exp[−a(t − t ′)]ξ0(t ′)dt ′, x(0) = 0, t � 0

(D1)

W (t) =
∫ t

0
exp[ϕ(t − t ′)]ξe(t ′)dt ′, W (0) = 0, t � 0.

(D2)

From expression (D1) we note that for t → ∞ the SP x(t) 792

saturates to its stationary state. Therefore, we can introduce 793

the notation 
 to characterize the random variable x(∞) = 
, 794

which in addition can be seen to be characterized by the normal 795

PDF 796

P (
) = exp
(−
2

/
2σ 2




)
√

2πσ 2



, σ 2

 = 1

2a
, 
 ∈ (−∞,∞).

(D3)

On the other hand, from (D2), the SP W (t) can be written in 797

the form 798

W (t) = eϕtη(t), (D4)

where the SP η(t) fulfills the stochastic differential equation 799

dη

dt
= e−ϕt ξe(t), η(0) = 0, t � 0.

In addition, it is possible to see that the SP η(t) also saturates 800

for times t � ϕ−1. Then the random variable η(∞) ≡ η is 801

characterized by the normal PDF 802

P (η) = exp
(−η2

/
2σ 2

η

)
√

2πσ 2
η

, σ 2
η = 1

2ϕ
, η ∈ (−∞,∞) ≡ Dη.

(D5)
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Approximating η(t) ∼ η(∞) in Eq. (D4), we can extract803

the escape times te by inverting a random mapping, i.e.,804

we can study the random escape times te from a random805

transformation law η → te (into a suitable support to ensure806

te � 0). To see this we first define te as the time it takes for the807

stochastic process W (t) to reach a threshold value We. Then808

we approximate Eq. (D4) by809

W 2
e = W (te)2 � e2ϕteη(∞)2 = η2 exp(2ϕte). (D6)

Now we can solve from (D6) the random escape time as a810

function of the threshold We, η, and ϕ,811

te = 1

2ϕ
ln

(
We

η

)2

,
We

η
� 1,

where η is a normal distributed random variable [see Eq. (D5)].812

Now using the scaling (40) we write We = Ae/
√

ε. Then the813

random mapping we were looking for is814

te = 1

2ϕ
ln

(
A2

e

η2ε

)
. (D7)

Here Ae is a threshold value used to characterize the pattern815

formation, i.e., the transition from Ae(t = 0) ∼ 0 to the816

patterned state Ae(te) ∼ O(1). Finally, the PDF for the escape817

times, i.e., the FPTD P (te), can be obtained from the theorem818

of the transformation of random variables819

P (te) =
∫

δ

(
te − 1

2ϕ
ln

A2
e

η2ε

)
P (η)dη, te � 0. (D8)

After some algebra we get (48). We can calculate the MFPT820

by taking the average of Eq. (D7) (or from the first moment of821

the FPTD) to obtain822

〈te〉 = 1

2ϕ

〈
ln

A2
e

η2ε

〉
.

Thus using a nondimensional time τe = ϕte we get Eq. (49).823

APPENDIX E: CALCULATION OF MOMENTS 824

OF THE PROCESS �(t) 825

To calculate the first moment of the non-Gaussian SP 826

�(t) = ∫ t

0 e−a(t−t ′)W (t ′)2dt ′ we use that for the Wiener SP 827

we know that 〈W (t)2〉 = t , Then 828

〈�(t)〉 =
∫ t

0
e−a(t−t ′)〈W (t ′)2〉dt ′ =

∫ t

0
e−a(t−t ′)t ′dt ′

= 1

a

(
t − 1

a

)
− e−at

a2
.

Therefore, in the long-time limit we get (at � 1) 829

〈�(t)〉 → t/a.

To calculate the second moment of the SP �(t) we use 830

Novikov’s theorem [1,25,26] for the Wiener SP 831

〈W (t1)W (t2)W (t3)W (t4)〉 = min(t1,t2) min(t3,t4)

+ min(t1,t3) min(t2,t4)

+ min(t1,t4) min(t2,t3).

Then we can write 〈W (t ′1)2W (t ′2)2〉 = (t ′1t
′
2 + 2[min{t ′1,t ′1}]) 832

and so we get 833

〈�(t)2〉 =
∫ t

0
e−a(t−t ′1)dt ′1

∫ t

0
e−a(t−t ′2)〈W (t ′1)2W (t ′2)2〉dt ′2

=
∫ t

0
e−a(t−t ′1)dt ′1

∫ t

0
e−a(t−t ′2)(t ′1t

′
2 + 2[min{t ′1,t ′1}])dt ′2

= 1

a4
{7 + e−2at − 8e−at + 2at(−3 + at).

+e−2at [1 + eat (−1 + at)]2}.
Therefore, in the long-time limit we get (for at � 1) 834

〈�(t)2〉 → 3(t/a)2.
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