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Abstract

Chemotherapy has made an essential contribution to
cancer treatment in recent decades despite its adverse
effects. As cancer survivors have increased, concern
about ex-patient lifespan has become more important
too. Doxorubicin is an effective anti-neoplastic drug that
produces a cardiotoxic effect. Cancer survivors who
received doxorubicin became more vulnerable to
cardiac disease than the normal population did. Many
efforts have been made to prevent cardiac toxicity in
patients with cancer. However, current therapies cannot
guarantee permanent cardiac protection. One of their
main limitations is that they do not promote myocardium
regeneration. In this review, we summarize and discuss
the promising use of mesenchymal stem cells for cardio-
protection or cardio-regeneration therapies and consider
their regenerative potential without leaving aside their
controversial effects on tumor progression.

Introduction
Globally, cancer is the leading cause of death. There were
14.1 million new cases of cancer in 2012, and an increase
of up to 22.2 million new cases by 2030 is predicted [1].
On the other hand, the advances in diagnostic methods
for early detection of tumors and the associated treat-
ments have increased the cancer survival rate of the global
population [2].
Chemotherapy is an essential tool in cancer treatment.

However, the use of anti-neoplastic agents has several
adverse effects. Doxorubicin, which belongs to the
anthracycline family, has been proven to be effective in
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different tissue-derived cancer diseases, including cancer
of the breast, lung, stomach, bladder, and skin. Despite
the anti-tumoral properties of doxorubicin, myelosup-
pression and particularly cardiotoxicity restrict its clin-
ical use [3].
Doxorubicin has been used in oncology treatment

since the 1970s. So far, the following risk factors for
doxorubicin-induced cardiotoxicity have been reported:
female gender, pre-existing cardiac diseases, medias-
tinal radiation, cumulative anthracycline doses, and
co-treatments with 5-fluorouracil, cyclophosphamide,
or taxanes [4].
Cardiomyopathy induced by doxorubicin was de-

scribed at an early stage (that is, during the first 30 days
after the start of treatment) with an incidence of 1 % to
2 % and also several years after the end of drug adminis-
tration [3]. In fact, retrospective clinical studies estimate
that within 30 years after cancer treatment, survivors are
eight times more likely to die from cardiac causes and
15 times more likely to be diagnosed with congestive
heart failure [5]. This long-term cardiotoxic effect is an
especially relevant threat to the survivors of childhood
cancer. For this reason, the quality of life of cancer sur-
vivors becomes an important issue that promotes the in-
vestigation of new monitoring strategies for early
diagnosis and multi-agent preventive treatments [6].
In this review, we describe the doxorubicin cardiomy-

opathy at molecular, histological, and functional levels
and the strategies to prevent and monitor cardiac dam-
age. Currently, the cardioprotective treatments based on
medical guidelines have limitations, which drive re-
searchers to find new ways to solve them. We discuss
the potential of mesenchymal stem cell (MSC) therapy
to prevent the cardiotoxicity induced by doxorubicin, its
incipient and promising results, and the uncertainty
about its use in patients with cancer.
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Doxorubicin cardiomyopathy
Pharmacokinetics studies have demonstrated that doxo-
rubicin has a triphasic plasma clearance after intravenous
injection, suggesting that doxorubicin uptake is faster than
its elimination from the tissues. For this reason, the risk of
toxicity depends directly on the steady-state distribution
of the drug [7]. Doxorubicin is accumulated mostly in the
liver, due to its role in metabolism, followed by the kidney
and heart [8]. In addition, pharmacokinetics analysis has
shown the distribution of doxorubicin in different tissues
in animal models, providing relevant information to better
understand the variability of the outcomes in cancer ther-
apy. Studies of tissue distribution of doxorubicin have
demonstrated that the dissemination of the drug in cancer
tissue is different than in normal tissue for multi-agent
factors; for instance, uneven regional vessel distribution in
subcutaneous tumors derived from MDA-MB-231 cells,
in athymic nude mice, reduced doxorubicin delivery and
interaction with cancer cells [8]. Therefore, this vascular
factor may produce drug-resistance phenotype in tumors.
Doxorubicin passes through cell membranes by pas-

sive diffusion. Inside the cells, doxorubicin accumulates
principally in the nucleus and mitochondria (two orders
of magnitude) in comparison with the cytoplasmic con-
centration [9]. The doxorubicin-anti-neoplastic effect is
based on its intercalation into DNA and inhibition of a
key enzyme (topoisomerase II) for the DNA replication
process [10], killing cells under active proliferation, such
as cancer cells. The specific mechanisms of doxorubicin
cardiotoxicity are complex and remain unclear. However,
these mechanisms are related mainly to the excessive
production of reactive oxygen species (ROS) in the mito-
chondria that cause cellular oxidative stress [11]. Mito-
chondrial ROS production occurs mainly by NADH
dehydrogenase oxidation of doxorubicin and chelation
with Fe2+ [12]. The heart is particularly sensitive to doxo-
rubicin because it has a high density of mitochondria per
cardiomyocyte and low capacity for cellular regeneration
(compared with other tissues). As a direct and indirect
consequence of oxidative stress, doxorubicin impairs Ca2+

signaling in mitochondria and sarcoplasmatic reticulum,
altering the contraction cycle in cardiomyocytes, produ-
cing lipid peroxidation in cell membranes, and inhibiting
transcription processes. These effects downregulate the
expression of cardiac muscle-specific proteins (for ex-
ample, myosin light and heavy chains) and mitochondrial
proteins (for example, ADP/ATP translocase), leading the
cardiomyocyte to a loss of contraction force by mechan-
ical and energetic causes [13].
Huang and colleagues [14], using a pediatric animal

model of late-onset doxorubicin-induced cardiotoxicity,
concluded that, besides the toxic effects in cardiomyo-
cytes, doxorubicin impaired cardiac progenitor cell
(CPC) proliferation and differentiation into cells of

cardiac lineages. Moreover, Piegari and colleagues [15]
reported that doxorubicin produces a premature senes-
cence in human CPCs (c-kit+) and their progeny, redu-
cing regenerative capacity of the heart. On the other
hand, De Angelis and colleagues [16] reported that
CPC administration improved the cardiac function in
an animal model of dilated cardiomyopathy induced by
doxorubicin administration. This doxorubicin cyto-
toxic effect could explain the increased susceptibility
of cancer survivors to develop a cardiac disease after
many years of anti-cancer drug treatment.
In regard to the mechanism of apoptosis induced by

doxorubicin, there is a consensus on the main role of
oxidative stress to activate cell death signal pathways. In
vitro studies using H9c2 myoblast have shown that oxi-
dative stress induced by doxorubicin activates AMPK (a
protein kinase considered to be an intracellular sensor of
the energy status) that interacts with p53, leading to
bax/bad translocation from cytosol to mitochondria and
promoting the release of cytochrome c and caspases ac-
tivation [17,18]. On the other hand, it was reported that
doxorubicin downregulates the expression of bcl-2, a
protein known for its anti-apoptotic properties. The bax/
bcl-2 complex has crucial importance in the cell destiny -
survival or death - during doxorubicin treatment [19,20].
Oxidative stress is also involved in the activation of the
apoptotic pathway p38-MAPK/NF-κB and release of pro-
inflammatory cytokines, including interleukin (IL)-1β and
IL-6 and tumor necrosis factor-alpha (TNF-α) in H9c2
cells [21].
Doxorubicin also produces oxidative stress in endothe-

lial cells, leading to an increase in endothelial permeability
by reduction of nitric oxide production, pro-inflammatory
cytokine secretion, and the expression of adhesion mole-
cules [22]. Leukocyte infiltration and neutrophil activation
lead to further cytokine secretion, protease release, and
oxidative stress production, thereby exacerbating myocar-
dial injury and death [23].
In this way, doxorubicin triggers a cardiac inflammatory

response, in which several mechanisms of innate immune
response are activated. To find the key molecules involved
in doxorubicin-induced inflammation, researchers have
used several strategies, including neutralizing antibodies
to specific receptors (for instance, Toll-like receptor 4, or
TLR4) [24], knockout mice (for example, TLR4 or STAT3)
[25,26], or inhibitory agents for the synthesis of pro-
inflammatory molecules (for example, prostaglandin E2, or
PGE2) [27]. The results of these experiments have a com-
mon conclusion; when the pro-inflammatory response in-
duced by doxorubicin was inhibited, cardiac function was
significantly improved, suggesting that the exacerbated re-
sponse of the immune system accentuated heart damage.
Currently, under a myocardium cell death process in an

inflammatory microenvironment, collagen fiber synthesis
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is promoted, constituting the whole picture of histological
markers in doxorubicin cardiotoxicity: loss of muscle fiber,
sarcoplasmatic distention, vacuolization of cardiomyo-
cytes, and fibrosis [28].
In adult patients, the structural and functional changes

induced by doxorubicin toxicity progress mainly to di-
lated cardiomyopathy, which is defined as an increase in
left ventricle (LV) dimension, thinness of LV walls, and a
severe loss of contractility. However, in pediatric pa-
tients, a restrictive cardiomyopathy described by normal
dimension and wall thickness of LV and an enlargement
of auricle and hardening of cardiac muscle generating
diastolic dysfunction is more frequent [29].

Monitoring and treatments to prevent
doxorubicin-induced cardiotoxicity
According to current medical guidelines, monitoring of
cardiotoxicity for doxorubicin dose (in milligrams per
square meter) is performed with echocardiography and
multiple gated acquisition scan. A reduction of 10 % in
left ventricular ejection fraction (LVEF) from 50 %
(basal) is sufficient to suspend the oncologic treatment
[30]. However, these non-invasive methods do not de-
tect early heart injury to prevent subsequent cardiac
dysfunction or predict patient tolerance to doxorubicin.
Therefore, the identification of new biomarkers has
been investigated with promising results. Ky and col-
leagues [31] proposed that early increases of cardiac
troponin I and myeloperoxidase biomarkers are useful
to estimate the degree of tolerance of each patient to an
oncology treatment for breast cancer. Desai and col-
leagues [32] identified plasmatic microRNAs (miR-34a
and miR-150) that correlated with heart injury in a pre-
clinical model; this finding may lead to the development
of new biomarkers for earlier events in doxorubicin-
induced cardiotoxicity before the release of cardiac
troponins.
Prevention of cardiotoxicity is managed mainly by

monitoring the maximum cumulative dose (that is, 300
to 350 mg/m2 for adults and 200 to 250 mg/m2 for chil-
dren [33]) and by using alternative methods for drug de-
livery, such as pegylated or non-pegylated liposomal
doxorubicin, that increase the half-life of the molecule
in plasma, reducing cardiac injury. However, patients
usually undergo the uncomfortable adverse effects of
plantar-palmar erythrodysesthesia and deeper myelosup-
pression [34]. An alternative to reducing the cardiotoxic
effects of doxorubicin is the co-administration of the
drug with iron-chelating agents such as dexrazozane;
however, its use is restricted to particular cases of adult
patients because data from clinical trials in which the
administration of this drug enhances the myelosuppres-
sive effects and interferes with the anti-tumor therapy of
doxorubicin have been reported [9,35].

Doxorubicin cardiotoxicity is frequently refractory to
conventional pharmacologic therapies for cardiac ische-
mic diseases. Βeta-blockers (for example, metoprolol)
and angiotensin-converting enzyme inhibitors (for example,
enalapril) are useful to attenuate doxorubicin-induced car-
diomyopathy; however, long-term administration should
be balanced with their adverse effects such as hypotension,
fatigue, and dizziness since their beneficial effects are only
transient [36].

Cell-based therapies for cardiac diseases
Cell-based therapies have a huge potential to treat cardio-
vascular diseases because of their regenerative properties
and safety. Until 2013, approximately 2,000 patients had
been enrolled in clinical trials around the world to evalu-
ate different kinds of stem cell therapies showing promis-
ing results [37]. In regard to the cell sources, embryonic
stem cells (ESCs) are attractive for therapy applications.
ESCs can differentiate into cardiomyocytes, which can in-
tegrate into the host cardiac tissue and improve the func-
tional performance in animal models of heart damage.
However, the ESCs used in pre-clinical trials have strong
bioethical restrictions because it is necessary to destroy
human embryos for their generation. Additional complica-
tions regarding the use of ESCs include the possibility of
teratoma formation in the host and the necessary life-long
immunosuppressive therapy to prevent graft rejection
[38]. In 2006, Takahashi and Yamanaka [39] described a
procedure to induce pluripotency in somatic cells, gener-
ating a new kind of stem cells with a wide differentiation
potential, called induced pluripotent stem cells (iPSCs).
Mauritz and colleagues [40] showed that cardiomyocyte
administration, obtained from in vitro differentiation of
iPSCs, improved the cardiac function in an animal model
of infarcted heart, suggesting a promising future for iPSC-
based therapy. iPSC therapy has the advantage of being
free of ethical restrictions; however, owing to their ESC-
like properties, they could be tumorigenic [41]. As a result,
more investigations are needed to identify new differenti-
ation and purification protocols before they can be used
in clinical trials. In 2003, Beltrami and colleagues [42]
reported that the adult heart contains CPCs that sup-
port the cardiac regeneration process because of their
ability to differentiate into cardiomyocyte or endothelial
cells. These cells, isolated from cardiac human biopsies,
have the capacity to be highly expanded ex vivo, allow-
ing their use in cell-based therapy protocols [43]. The
regeneration potential of CPCs was demonstrated in
animal models of myocardial infarct [44]. At present,
CPC-based therapy is being evaluated with favorable re-
sults in two clinical trials: SCIPIO (Stem Cell Infusion
in Patients with Ischemic Cardiomyopathy) and CADU-
CEUS (Cardiosphere-Derived Autologous Stem Cells to
Reverse Ventricular Dysfunction), the latter in patients
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with acute myocardial infarct [45–47]. Finally, clinical
or pre-clinical studies (or both) testing new treatments
for cardiac regeneration have been reported with the
use of adult MSCs, including bone marrow MSCs
(BMMSCs), adipose tissue-derived MSCs (ASCs), and
MSCs from human umbilical cord blood (hUCBs). In
this review, we will focus the discussion on MSC
therapies.
MSCs have many characteristics that make them a

suitable tool for preventive or regenerative myocardium
therapies (or both), including prevention of doxorubicin
cardiomyopathy. MSCs are self-renewal cells with the
potential to differentiate into cells of the adipogenic,
osteogenic, and condrogenic lineages. Moreover, in
in vivo and in vitro models, MSCs can express specific
cardiomyocyte markers (for example, connexin 43 and
N-cadherin) [48,49]. However, when MSCs were admin-
istered by either local or systemic routes, their myocar-
dial homing capacity was weak. For this reason, it is
accepted that differentiation into cardiomyocyte is not a
relevant mechanism in myocardium regeneration [50].
On the other hand, it was reported that MSCs are
attracted to the damaged organs by a chemotaxis process
in which MSCs recognize molecules overexpressed in
damaged tissues - for example, stromal cell-derived
factor-1 and monocyte chemoattractant protein-1 - by
interaction with the C-X-C chemokine receptor type 4
and 1 and chemokine receptor type 2 surface receptors
[50], leading to a selective homing after systemic
administration.
MSCs secrete paracrine factors such as insulin-like

growth factor, hepatocyte growth factor, endothelin-1,
and basic fibroblast growth factor (with proliferative and
anti-apoptotic properties), vascular endothelial growth
factor and platelet-derived growth factor (with angio-
genic properties), and matrix metallopeptidase-9 (with
anti-fibrotic properties) [51,52]; all are involved in the
regenerative and cardiac remodeling process. Indeed,
MSCs stimulate host CPC proliferation and differentiation
and enhance cardiomyocyte cell cycling, mechanisms that
could attenuate the long-term cardiotoxic effect of doxo-
rubicin [53,54].
MSCs have been defined as hypoimmunogenic cells

because they are not rejected by the recipient’s immune
system, even if they come from a non-histocompatible
individual [55], allowing allogeneic transplantation
therapies.
MSCs also have anti-inflammatory properties through

the activation, suppression, migration, or differentiation
of specific immune system cells, including T cells, nat-
ural killer cells, B cells, macrophages, dendritic cells, and
neutrophils, by the secretion of several immune regula-
tors, including transforming growth factor-beta, IL-4,
IL-6, IL-10, PGE2, and indoleamine 2,3-dioxygenase

[56]. The role played by MSCs inside the myocardium
during the inflammatory process (induced by infection,
metabolic disorders, or chemotherapies) is very difficult
to elucidate; however, it is known that Toll-like recep-
tors (for example, TLR3 and TLR4) expressed in MSCs
have a key role in the modulation of the inflammatory
process [57].
In regard to oxidative stress, the main cause of

doxorubicin-induced cardiotoxicity, it was reported
that MSCs could manage elevated tissue oxidative
stress by reducing ROS-induced apoptosis and modify-
ing the redox microenvironment [58]. Finally, given
their technical aspects, MSCs have the advantage that
their isolation and ex vivo expansion are quite simple
and secure from external contamination [59].

Mesenchymal stem cell therapy for doxorubicin
cardiomyopathy
In regard to the development of cell-based therapies to
prevent doxorubicin cardiotoxicity or to induce the re-
generation of the damaged heart, the investigation is still
at pre-clinical stages. Under a regenerative therapy hy-
pothesis, MSCs are administered after an established di-
lated cardiomyopathy, whereas under a preventive therapy
hypothesis, MSCs are transplanted before or during doxo-
rubicin treatment (Table 1). It was reported that the local
administration of BMMSCs after 4 weeks of doxorubicin
treatment did not improve cardiac function [60]; however,
when the BMMSC administration was performed 2 weeks
after doxorubicin administration, it generated a significant
improvement in LVEF [61]. In a rat model of dilated car-
diomyopathy, the intravenous administration of BMMSCs
2 weeks after doxorubicin treatment only reduced myo-
cardium fibrosis [62], but when 10 doses of BMMSCs
(one per day) were given intravenously 10 weeks after the
doxorubicin treatment, cardiac contractility was improved
whereas myocardium fibrosis and LV diameter were re-
duced. These effects were associated with cardiac remod-
eling by the downregulation of the renin-angiotensin-
aldosterone system [63]. The systemic administration
of hUCBs after 2 weeks of doxorubicin treatment also
reduced heart weight and cardiac fibrosis but without
reported functional data [49]. Di and colleagues [64]
reported that hUCBs significantly prevent cardiac dys-
function when they were administered intravenously
during chemotherapy. Finally, when ASCs were admin-
istered before the doxorubicin chemotherapy, Oliveira
and colleagues [65] reported a partial cardioprotective
effect. According to the literature, the use of this kind
of cell-based therapy is highly versatile because almost
all therapies were successful (partial recovery or main-
tenance of cardiac function) given diverse factors, in-
cluding (i) time and route of administration of MSCs,
(ii) number of doses of MSCs, (iii) source of MSCs,
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Table 1 Cell-based therapies with mesenchymal stem cells for doxorubicin cardiomyopathy

Cell-based
therapy
hypothesis

Cell type/type of
transplantation

Number of cells
administered

Delivery route/ time of
administration

Animal
model

Doxorubicin treatment/ route of
administration

Method of
cardiac diagnosis

Increase in LVEF versus
control (percentage)

References

Regeneration BMMSC/autologous 1 × 107 Intracoronary/4 weeks after
Dox treatment

Rabbit 2 mg/kg per week for 8 weeks/
intraperitoneal

Echocardiography 3 (not significant) [60]

Regeneration BMMSC/autologous 1.5-2.0 × 106 Epimyocardial/2 weeks after
Dox treatment

Rabbit 3 mg/kg for 6 weeks/
intraperitoneal

Echocardiography 9 (P < 0.002) [61]

Regeneration BMMSC/
heterologous

5 × 106 Intravenously/2 weeks after
Dox treatment

Rat Three doses of 2.5 mg/kg per
week for 2 weeks/intraperitoneal

ND [62]

Regeneration BMMSC/
heterologous

5 × 106 Intravenously (one injection
per day, 10 times)/ 10 weeks
after Dox treatment

Rat 2.5 mg/kg per week for 6 weeks/
intraperitoneal

Echocardiography 13 (P < 0.05) [63]

Regeneration hUCB/xenograft 2.5 × 106 Intravenously/2 week after
Dox treatment

Mice 400 ng/kg per minute/oral ND [49]

Prevention hUCB/xenograft 1 × 106 Intravenously/at the end of
each Dox cycle

Mice Three cycles of three doses of
2 mg/kg per week/intraperitoneal

Echocardiography 10 (P < 0.05) [64]

Prevention ASC/heterologous 3 × 106 Intravenously/3 days before
Dox treatment

Rat 5 mg/kg per week for 4 weeks/
intraperitoneal

Echocardiography 13 (not significant) [65]

ASC, adipose tissue-derived mesenchymal stem cell; BMMSC, bone marrow mesenchymal stem cell; Dox, doxorubicin; hUCB, mesenchymal stem cell from human umbilical cord blood; LVEF, left ventricular ejection
fraction; ND, not determined
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and (iv) grade of cardiac injury induced by doxorubi-
cin. Unfortunately, the duration of the beneficial effect
induced by MSC administration has not been tested.
Doxorubicin also has a toxic effect in endogenous MSCs.

Oliveira and colleagues [66] reported that BMMSCs,
isolated from rats that received doxorubicin, have a
lower proliferation rate and lower differentiation cap-
acity (in comparison with cardiomyocytes), suggesting
that autologous MSC transplantation to treat doxorubi-
cin cardiomyopathy is not a suitable option for patients
after doxorubicin treatment. Moreover, intravenous ad-
ministration of allogeneic BMMSCs should be performed
when plasmatic doxorubicin concentration is under 1 μM
in order to reduce a direct cytotoxic effect [67].
The systemic administration of MSCs could have inte-

gral beneficial effects in patients with cancer. Zoja and
colleagues [68] demonstrated that BMMSCs could pre-
serve podocyte viability, reducing glomerular inflamma-
tion and sclerosis in an animal model of doxorubicin-
induced nephropathy. Additionally, the inflammatory
suppressive activity of MSCs could balance the inflam-
mation induced by doxorubicin (i) in the brain, reducing
TNF-α production by microglial cells [69], and (ii) in
the liver, managing tissue-derived oxidative stress [70]
(Fig. 1).
In regard to the use of MSC therapy to prevent or revert

the cardiotoxicity effect of anti-cancer drugs such as dau-
nomycin, idarubicin, mitoxantrone (anthracyclines), 5-
fluorouracil (anti-metabolite), or cyclophosphamide (alkyl-
ating agent), we also expect a beneficial effect in cardiac
function because these drugs have a common mechanism
of toxicity in cardiomyocytes (excessive ROS production
by mitochondria, leading to apoptosis), which is also de-
scribed in doxorubicin toxicological studies [71–73].

Mesenchymal stem cell and cancer
It has been postulated that the regenerative potential of
MSCs may be a negative feature in patients with cancer.

In fact, there is a controversial point of view about the
role of MSCs in cancer. Pre-clinical studies reported that
MSCs could promote or inhibit tumor growth [74].
Many mechanisms have been associated with these oppos-
ite effects, such as vascular support, apoptosis modulation,
chemokine signaling, and immune system modulation
[36]. In experimental models of cancer in which doxorubi-
cin is also present, the results about the role of MSCs are
also contradictory. Human ASC-derived conditioned
medium promoted the resistance of MDA-MB-231 cells
to doxorubicin [75]; however, human ASCs inhibited the
proliferation of MCF-7 cells in vitro [76] and increased
the sensitivity of cells from a mammary tumor (SKBR3) to
doxorubicin [77]. BMMSC-derived conditioned medium
improved the viability of 4 T1 cells (mammary adenocar-
cinoma murine cells) in the presence of doxorubicin; like-
wise, when BMMSCs were co-injected with 4 T1 cells in
the mammary fat pad of mice, BMMSCs inhibited drug-
induced apoptosis of tumor cells [78]. However, when
hUCBs were injected intravenously in a murine model of
pre-established human colon carcinoma treated with
doxorubicin, they did not alter drug-anti-tumoral effi-
ciency [64]. On the other hand, MSCs have a positive
chemotaxis for tumor cells but this property is independ-
ent of tumor growth capacity. Taking advantage of this
propriety, many studies have proposed MSCs as a vehicle
for delivery of anti-cancer drugs [79]. In summary, it
seems that the final result (carcinogenic or anti-tumoral
role of MSCs) depends on the microenvironment gener-
ated by the specific interaction between cancer cells and
MSCs during tumor development (Fig. 1). Further investi-
gation is needed to elucidate the molecular mechanisms
of communication between MSCs with cancer cells and
with immune system cells.
When human MSCs are properly ex vivo-expanded

(that is, not forced to cell stress and non-exhausted),
no tumoral transformation has been reported. Indeed,
no association between autologous or allogeneic MSC

Fig. 1 Schematic representation of therapeutic targets of mesenchymal stem cells (MSCs) in doxorubicin cardiomyopathy and tumor progression.
LVEF, left ventricular ejection fraction
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administration and tumor formation was found in 36
clinical studies (phase I and II) reported by the Canadian
Critical Care Trials Group [80]. However, Kudo-Saito [81],
in a study of mice and humans with cancer metastasis, re-
cently identified an MSC subpopulation that aggravates
tumor progression, suggesting that MSCs could have a
spontaneous tumorigenic potential in vivo. Thus, a longer
follow-up is required to draw a final conclusion.

Conclusions
The quality of life of cancer survivors is an emergent
topic in the scientific community for the consequences
of the adverse events induced by chemotherapy. There-
fore, doxorubicin-induced cardiotoxicity is still a relevant
issue for oncologic treatment, particularly in pediatric pa-
tients. The use of cardiovascular disease therapies based
on MSCs is safe, and the myocardium regeneration
achieved has a promising impact on the recovery of car-
diac function. In animal models, MSC administration
could prevent myocardium injury induced by doxorubicin
and regenerate the damaged tissue. In addition, owing to
the pleiotropic effects of MSCs, their administration could
have beneficial effects on extra-cardiac organs. However,
in cancer applications, the use of MSCs is still controver-
sial. More pre-clinical studies are needed to better predict
the final outcome of the reciprocal influence of cancer
cells and MSCs, which is dependent on the source and
route of MSC administration and the state and grade of
tumor growth. Additionally, clinical trials using MSC ther-
apy may be considered in patients after surgical tumor re-
moval, in order to prevent a heart vulnerability to cardiac
diseases in cancer survivors.
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