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Toward a multi-objective optimization robust problem, the
variations in design variables and design environment pa-
rameters include the small variations and the large varia-
tions. The former have small effect on the performance func-
tions and/or the constraints, and the latter refer to the ones
that have large effect on the performance functions and/or
the constraints. The robustness of performance functions is
discussed in this paper. A post-optimality sensitivity analysis
technique for multi-objective robust optimization problems
is discussed and two robustness indices are introduced. The
first one considers the robustness of the performance func-
tions to small variations in the design variables and the de-
sign environment parameters. The second robustness index
characterizes the robustness of the performance functions to
large variations in the design environment parameters. It is
based on the ability of a solution to maintain a good Pareto
ranking for different design environment parameters due to
large variations. The robustness of the solutions is treated as
vectors in the robustness function space, which is defined by
the two proposed robustness indices. As a result, the designer
can compare the robustness of all Pareto optimal solutions
and make a decision. Finally, two illustrative examples are
given to highlight the contributions of this paper. The first
example is about a numerical problem, whereas the second
problem deals with the multi-objective robust optimization
design of a floating wind turbine.
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Nomenclature
x design variable vector
p vector of design environment parameters
gk the kth constraint
f performance function vector
F feasible set
P Pareto optimal set
σ standard deviation
µ expected value
IRS robustness index against small variations
IF feasibility index of a solution

IP Pareto optimality index of a solution
h(p) probability density function of p

Irank individual’s ranking
N number of discrete values of design environment param-

eters
IRL robustness index against large variations
PR(P) the most robust solutions amongst the Pareto opti-

mal solutions
P produced power of wind turbine rotor
Fa the thrust force in the partial load region of a wind tur-

bine rotor
γr the root twist angle
γt the tip twist angle
cr the chord length at the root
ct the chord length at the tip
ω rotor rotational speed
rr root radius of the wind turbine
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rt tip radius of the wind turbine
b number of blades
ρ air density
vre reference wind speed
HAWT Horizontal Axis Wind Turbine
MOOP Multi-Objective Optimization Problem
MOROP Multi-Objective Robust Optimization Problem
RI Robustness Index
RDP Robust Design Problem
RF-Space Robustness Function Space
DV Design Variable
DEP Design Environment Parameter
PF-Space Performance Function Space
PDF Probability Density Function
BEMT Blade Element Momentum Theory
UD Uniform Distribution
ND Normal Distribution
N/A Not Affected

1 Introduction
Many design optimization problems are Multi-Objective

Optimization Problems (MOOP) and are subject to uncer-
tainties or variations in their parameters. Robustness is a
product’s ability to maintain its performance under the vari-
ations in its parameters. Robust design aims at maximizing
product’s robustness. In other words, it aims at minimiz-
ing the sensitivity of performance to variations without con-
trolling the source of these variations [1]. Sometimes, the
robustness of a product is as important as or even more im-
portant than its performance. So, to focus on the trade-off
between robustness and performance of a product is mean-
ingful. For such problems, namely Multi-Objective Robust
Optimization Problems (MOROP), it is important to obtain
design solutions that are both optimal and robust.

There exist some Robustness Indices (RI) for MOROP
in the literature. In fact, how to account for the variations in
design parameters and how to measure robustness is a widely
discussed problem [2]. Without loss of generality, the de-
sign parameters can be divided into two types, Design Vari-
ables (DVs), which can be controlled by the designer, and
Design Environment Parameters (DEPs), which are uncon-
trollable parameters.

Existing works mainly focus on the small variations in
DVs and DEPs [3, 4, 5, 6, 7, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16,
17, 18, 19]. Moreover, some previous work focused on the
variations in the performance function model [20,21,22,23].
Toward MOOP, the designer’s preference is also a type of
variation in MOROP [24, 25, 26].

Besides the small variations in DVs and DEPs, there
may be large variations in DEPs in some engineering prob-
lems. For instance, the actual wind speed may vary greatly
in a short time for a wind turbine rotor. In some ar-
eas, the environment temperature can fluctuate greatly be-
tween daytime and night. As a matter of fact, the prob-
lem with regard to large variations in DEPs can be con-
sidered as a special dynamic optimization problem, where

the performance function and/or the constraints change with
time [27, 28, 29, 30, 21, 22].

One way to distinguish between small variations and
large variations in design parameters is whether they are un-
certain or not [31]. Another way to distinguish between
small and large variations is whether a linearization is rea-
sonable over the range of variations. The distinction between
small and large variations is commonly presented as local
versus global sensitivity analysis in the literature on sensi-
tivity analysis [32, 33, 34, 35]. The concept of large vari-
ations has been discussed in [36, 16, 23, 37] for comparing
the difference between the linear and nonlinear performance
functions. Nevertheless, in those discussions with regard to
large variations, most of the existing criteria for MOROP
aim at finding a design solution that gives desirable means,
variances, quantiles or probabilities of violating constraints
based on the distributions of the performance and constraint
values with respect to the variations in the design parameters.
Few criteria aim at finding a solution that maintains a good
Pareto ranking for as many different DEP values in the sam-
ple space as possible. As a matter of fact, the Pareto ranking
of a solution may be dramatically affected due to large varia-
tions in DEPs. In this paper, the distinction between small are
large variations is made based on their effect on the perfor-
mance functions. The small variations in design parameters
refer to the ones that have small effect on the performance
functions. The large variations in design parameters refer to
the ones that have large effect on the performance functions.

Accordingly, a post-optimality sensitivity analysis tech-
nique for multi-objective robust optimization problems is
discussed while considering both small and large variations
in design parameters. Two robustness indices (RI) are also
introduced. The first one characterizes the robustness of
MOOPs against small variations in the design parameters. It
is based on the distributions of the performance function val-
ues with respect to these small variations. The second robust-
ness index characterizes the robustness of MOOPs against
large variations in DEPs. It is based on the solution’s ability
to maintain a good Pareto ranking for as many different de-
sign environments as possible. As a result, the designer can
make a decision based on the robustness of the solutions.

The paper is organized as follows. Section 2 provides
the theoretical background on Multi-Objective Optimization
Problems (MOOPs), Robust Design Problems (RDPs) and
Multi-Objective Robust Optimization Problems (MOROPs).
Two Robustness Indices (RI) and the concept of Robustness
Function Space (RF-Space) are introduced in Section 3. Two
illustrative examples are given in Section 4 to highlight the
contributions of the paper. The first example is about a nu-
merical problem, whereas the second problem deals with the
multi-objective robust optimization design of a floating wind
turbine. Conclusions and future work are presented in Sec-
tion 5.



2 Theoretical Background
2.1 Multi-Objective Optimization Problem

A general formulation of MOOP is given in Eqn. (1):

minimize f(x,p) = [ f1 f2 . . . fm]
T

subject to gk(x,p)≤ 0, k = 1, . . . ,q
xl

l ≤ xl ≤ xu
l , l = 1 . . . ,n

(1)

where f(x,p) = [ f1 f2 . . . fm]
T denotes the m-dimensional

vector of performance functions. x = [x1 x2 . . . xn]
T denotes

the n-dimensional vector of DVs. Note that the nominal val-
ues of DV are controllable, xl

l and xu
l are the lower and upper

bounds of xl respectively. p = [p1 p2 . . . pr]
T denotes the r-

dimensional vector of DEP, which cannot be adjusted by the
designer, and they are uncontrollable parameters. The func-
tions gk(x,p) = [g1 g2 . . . gq]

T are the constraints. A design
that does not violate any constraint is called “feasible”. The
set of feasible solutions is called feasible set and named F .

Since there are some trade-offs amongst the m conflict-
ing objectives, none solution of F can dominate another so-
lution of F . The optimization problem (1) generally has
more than one optimal solutions. Those solutions are de-
fined as Pareto optimal solutions, which cannot be dominated
by any other feasible solution [38, 39, 40, 26]. The set of
all Pareto optimal solutions is called Pareto optimal set and
named P . The Pareto optimal solutions lie on a boundary in
the Performance Function Space (PF-Space), called Pareto
front.

2.2 Robust Design Problem
The concept of robustness is used in many fields such as

engineering, biology, economy, computer science [41,42,26,
43, 44, 45, 46, 47]. In this paper, the robustness of a product
is defined as follows:

Definition 1. Robustness is a product’s ability to maintain
its performances under conditions of varying parameters.

Robust design, a term originally introduced by Genichi
Taguchi [48], is a way of improving the quality of a prod-
uct by minimizing the effect of variations, without eliminat-
ing the causes themselves. Many researchers refer to robust-
ness [49, 50, 51, 52, 1, 53, 54, 55, 56].

Although different expressions are used, their meanings
are similar. In this paper, we define the robust design as fol-
lows:

Definition 2. The design of a product is robust if and only
if the performances of the good under design is as little sen-
sitive as possible to variations and uncertainties.

2.3 Multi-Objective Robust Optimization Problem
A MOROP aims to find out a solution that is feasible,

optimal and robust. To come up with an feasible, optimal
and robust design, the three following scenarios have been
identified.

1. Optimal design and robust design are equally im-
portant: It means that performance functions and ro-
bustness functions are optimized simultaneously. The
designer can use the new performance functions by
adding the effects of robustness, instead of original
performance functions [3, 4, 6, 7, 57]. Moreover, the
robustness functions can be considered as new con-
straints [8,9,58,59,14,16,17,60] or additional optimiza-
tion objectives [15, 61, 62, 63, 64, 65, 66, 67].

2. Optimal design is primary and robust design is sec-
ondary: It is one post-optimality approach. The final
solution is selected from the Pareto optimal set based on
the robustness criterion [68,69,70,24,25,71,18,19,72].

3. Robust design is primary and optimal design is sec-
ondary: The final solution is selected from the most
robust solutions based on the values of the performance
functions [12].

In this paper, the optimal design is supposed to be of
primary importance and the robust design of secondary im-
portance. Although there exist some papers dealing with this
method [68,69,70,24,25,71,18,19,72], which is also called
as post-optimality sensitivity analysis, the final solution is
selected from the Pareto optimal set based on its robustness.
Moreover, in this paper we consider both small variations in
design parameters and large variations in DEPs simultane-
ously.

3 New Robustness Indices for MOROP
Two Robustness Indices (RI) are introduced in this sec-

tion. Then, the concept of RF-Space is presented and the
solution robustness is defined as a vector in the RF-Space.
Finally, a discussion on this new method is presented.

3.1 Robustness Index with regard to the Small Varia-
tions in DVs and DEPs

Figure 1 illustrates the solutions of a simple multi-
objective optimization problem. It has two performance
functions ( f1, f2,), some DVs (x) and DEPs (p). Let us se-
lect solution A, solution B and solution C, which are lo-
cated on the Pareto front. When there are small variations
in DVs and DEPs, then their performances varies in the
grey area around their nominal values in the PF-Space, as
shown in Fig. 1. Obviously, in the PF-Space, solution B
has smaller variations around its nominal values than solu-
tions A and C. It means than solution B is more robust than
solutions A and C. However, the size of the grey areas as-
sociated with solution A and solution C are the same, but
their shapes are different. So the comparison between the
robustness of solution A and solution C is not an easy task.
Toward the different types of uncertainties, there are differ-
ent methods to define RI for MOOP, such as using the worst
case scenario [14, 15, 16, 73, 17], the expectancy measure
[6, 7, 3, 4, 5, 8, 9, 49, 2, 74], and the probabilistic threshold
method [8, 9, 2].

We select a RI against the small variations in DVs and
DEPs, based on the expectancy measure. A new RI (IRS)



Fig. 1: The performances of solutions vary around their nom-
inal values in the PF-Space, with regard to small variations
in DVs and DEPs

Fig. 2: The distribution of the ith performance function as a
function of small variations in DVs and DEPs

is introduced and is based on the actual variations of per-
formances. Under the small variations in DVs and DEPs,
the actual performances are distributed around the nominal
values. In the PF-Space, the actual performances follow a
multivariate distribution. Here, in order to simplify the index
associated with each performance function, the standard de-
viation σ of the actual performances is used as a measure for
the robustness: the smaller the standard deviation, the more
robust the design. The absolute value of the difference be-
tween the expected value (µ) and the nominal value ( f0) is
also a robustness measure: the smaller the absolute differ-
ence, the more robust the design. Figure 2 shows an exam-
ple, which follows a normal distribution, σ fi and µ fi are the
standard deviation and expected value of the ith performance
function under small uncertainties; fi,0 is the nominal value;
f max
i and f min

i are the maximum and the minimum values of
the ith performance function on the Pareto front, respectively.

Here, we assume that the standard deviation (σ) and the
absolute value of the difference between µ and f0 have the
same importance for the designer. Moreover, we assume that
the robustness of all performance functions has the same im-
portance. The robustness index IRS of a MOOP with respect
to small variations in DVs and DEPs is defined as a scalar.

The robustness of each performance function is also normal-
ized. To normalize the sum of the standard deviation (σ fi )
and the absolute difference (|µ fi − fi,0|), we divide it by the
difference between the two extreme values of the ith perfor-
mance function, namely, f max

i − f min
i . As a result, IRS is de-

fined as follows:

IRS(x) =

√
m

∑
i=1

(
σ fi + |µ fi − fi,0|

f max
i − f min

i

)2

(2)

The smaller IRS, the more robust the design.
Note that even if the variations are small, the constraints

may not be satisfied due to variations. This refers to the ro-
bustness of constraints (reliability). As a matter of fact, the
index IRS is not discussed deeply in this paper. It is just based
on the distributions of the performance function values with
respect to these small variations. To simplify the index, the
reliability with regard to small variations is not considered in
this paper.

3.2 Robustness Index with regard to the Large Varia-
tions in DEPs

Since the DVs are controllable and the DEPs are uncon-
trollable, we assume that there are only large variations in
DEPs. The mapping functions between the DVs and perfor-
mance functions can change a lot due to large variations in
DEPs. For a MOOP while considering large variations in
DEPs, we assume that the initial DEPs are p = p0, the set of
feasible solutions is named F0 and the set of Pareto optimal
solutions is denoted P0. It is noteworthy that those Pareto
optimal solutions are alternative solutions for the designer.

Since large variations in DEPs exist, the DEPs may
change from p0 to pnew. The design environment pa-
rameters p are supposed to take N discrete values:
p1,p2, · · · ,pN . The Probability Density Functions (PDF) of
p are h(p1),h(p2), · · · ,h(pN). The initial DEPs p0 are equal
to the ones having the maximum PDF amongst the N discrete
values. The corresponding feasible sets are F1,F2, · · · ,FN .
A feasible and Pareto optimal solution in P0 may not be
Pareto optimal, and not feasible in the new environments. To
compare the solution’s robustness against large variations in
DEPs, the traditional methods are not applicable. Toward a
MOOP, a definition of the solution’s robustness against large
variations in DEPs is proposed thereafter:

Definition 3. Toward a multi-objective optimization prob-
lem against large variations in DEPs, solution’s robustness
against large variations in DEPs is a measure of its ability
to be optimal in different design environments.

Figure 3 illustrates the solutions of a simple MOOP.
Similarly to Fig. 1, the problem has two objective functions
( f1, f2), some DVs (x) and DEPs (p). p0 is the nominal values
of DEPs. Let us consider Pareto-optimal solutions A and B
as examples. The grey area shows the variations in perfor-
mances of solution A and solution B in the PF-Space, under
small variations in DVs and DEPs. As seen before, we can



Fig. 3: The performances of solutions vary greatly in the PF-
Space due to large variations in DEPs

conclude that solution B is more robust than solution A with
regard to small variations in DVs and DEPs.

On the contrary, it may not be the case if there are large
variations in DEPs. As shown in Fig. 3, in a new environ-
ment, we assume that when the DEPs p change from p0 to
pnew, there are large variations in the PF-Space for all the
solutions. For instance, in the PF-Space, solution A moves
from A0 to Anew, solution B moves from B0 to Bnew. Both so-
lutions have quite large variations in f. Then, the following
question remains: “How can we compare the robustness of
solutions A and B”?.

As shown in Fig. 3, toward solution A, ∆ f S
1,A and ∆ f S

2,A
represent the largest distance of the actual performance func-
tion values and nominal performance function values in f1
and f2 respectively, with regard to the small variations in
DVs and DEPs. ∆ f L

1,A and ∆ f L
2,A represent the largest dis-

tance of the actual performance function values (assuming
only two samples: A0 and Anew) and nominal performance
function values in f1 and f2 respectively, with regard to large
variations in DEPs. If ∆ f L

1,A >> ∆ f S
1,A, ∆ f L

2,A >> ∆ f S
2,A ,

and ∆ f L
1,B >> ∆ f S

1,B, ∆ f L
2,B >> ∆ f S

2,B, we can see that the
caused actual performance function values of both solution
A and solution B are sufficiently far from their nominal ones,
with regard to large variations in DEPs. As a consequence,
we can conclude that the traditional methods, which provide
some results based on the difference between actual perfor-
mance function values and nominal ones, make little sense.
Therefore, the method proposed in this paper aims to com-
pare their relative positions in the PF-Space associated with
the new environment. From Figure 3, we can see that, in the
new environment, p = pnew, solution A is still on the new
Pareto front, which means that it is still one of the best so-
lutions for the designer. Meanwhile, solution B is far away
from the new Pareto front, which means that it is no longer

a good choice for the designer. As a result, we can conclude
that solution A is more robust than solution B with regard to
the large variations in DEPs.

As a result, a RI with regard to large variations in DEPs
is defined thereafter. Toward the discrete probability distri-
bution of DEPs, mathematically, the RI IRL of a solution x is
defined as follows:

IRL(x) = 1− IF(x)
N

∑
1

IP(x,p j)h(p j), (3a)

IF(x) =
{

1, ∀ j = 1,2, · · · ,N,x ∈ F j;
0, ∃ j = 1,2, · · · ,N,x 6∈ F j.

(3b)

IP(x,p j) = 1/Irank(x,p j) (3c)

where IF is the Feasibility Index of the solution; IP is the
Pareto optimality Index of the solution; h(p) is the PDF of
p; Irank(x,p j) is the individual’s ranking in the new environ-
ment where p= p j and amounts to the number of individuals
by which it is dominated amongst the alternative solutions,
plus one [75, 76]. For a better understanding, a simple ex-
ample is shown in Fig. 4. In a new environment, if a solu-
tion is still non dominated by any other solution, then the IP
value will be equal to one for that solution. Otherwise, the
IP value will be lower than one, but greater than zero. Note
that the number of the alternative solutions affects the value.
However, the proposed definition can divide the alternative
solutions into different groups based on their robustness.

Fig. 4: The positions of the Pareto optimal solutions in a new
environment

Note that the index IRL is bounded between zero and one.
On the one hand, if a solution is feasible in all environments
and cannot be dominated by any other solution in all possible



Fig. 5: Each Pareto optimal solution has a corresponding po-
sition in the RF-Space

environments, then IRL = 0. On the other hand, if a solution
is non-feasible in some new environments, then IRL = 1. If
each solution belongs to the set of Pareto optimal solutions
P0, then if it is feasible in all environments and its IRL value
will be greater than or equal to zero and smaller than one.

Note that the individual’s ranking Irank(x,p j) corre-
sponds to a specific value of DEPs: p j, where j = 1,2, · · · ,N.
In case there exist continuous probability distributions of the
DEPs, N becomes infinite and it is difficult to assess the ro-
bustness index IRL for a solution x. However, since the do-
main of the DEPs can be partitioned into many small parts,
we can simplify such a problem by using a discrete probabil-
ity distribution of the DEPs.

Finally, the smaller IRL, the more robust the design with
regard to large variations in DEPs.

3.3 Robustness Function Space
In this paper, we consider not only the RI against small

variations, IRS, but also the RI against large variations, IRL.
The RI of a Pareto-optimal solution is represented as a vec-
tor. The designer can analyze the robustness of Pareto opti-
mal solutions in the Robustness Function Space (RF-Space).
For a better understanding, we take IRS as one dimension of
the RF-Space, another dimension of the RF-Space is IRL, as
shown in Fig. 5.

Thanks to the proposed method, each Pareto optimal
solution has a corresponding position in the RF-Space, as
shown in Fig. 5. If IRS and IRL are not conflicting, then
the designer will be able to select the most robust solution
immediately, namely, the solution that minimizes both IRS
and IRL. If IRS and IRL are two conflicting objectives, then a
new Pareto front in the RF-Space will appear. The Pareto-
robust solutions represent the most robust solutions amongst
the Pareto optimal solutions. The set of Pareto-robust so-

lutions is named PR(P). Finally, the designer can select the
final solution from this set according to his/her requirements.

3.4 Flow chart

Fig. 6: A flow chart illustrating the proposed post-optimality
sensitivity analysis technique

A flow chart is illustrated in Figure 6 for a better under-
standing of the proposed post-optimality sensitivity analysis
technique. The first step is to determine whether the design
environment parameters (DEP) are subject to large variations
or not. The distinction between small and large variations is
made with regard to their effect on the performance func-
tions. The small variations in design parameters refer to the
ones that have a small effect on the performance functions.
The large variations in design parameters refer to the ones
that have large effect on the performance functions. In the
second step, Pareto optimal solutions are obtained for differ-
ent values of DEP. Those different values of DEP are due to
large variations in DEP. In the third step, robustness indices
IRS and IRL are calculated for each solution. The new Pareto
ranking of the obtained Pareto optimal solutions are obtained
in different design environments. Finally, the designer can
make a decision from the obtained Pareto optimal solutions
based on their robustness, namely, based on the values of IRS
and IRL for each solution.

4 Examples
In this section, two illustrative examples are given in or-

der to highlight the contributions of the proposed approach.
The first example is a simple numerical example and the sec-
ond example is a MOROP of a wind turbine blade design, in
which the variations include not only the small variations in
DVs and DEPs, but also large variations in DEPs.



4.1 Numerical illustrative example
The problem is defined in Eqn. (4). There are two per-

formance functions f1 and f2, one design variable x, one de-
sign environment parameter p and one constraint:

minimize f1(x, p) = x+ p/2 (4a)
minimize f2(x, p) = (x− p)2 (4b)
subject to 1≤ x≤ 10 (4c)

f1(x, p)≥ 3 (4d)

x is subject to small variations and the variations in x follow a
uniform distribution and are bounded between−0.1 and 0.1.
p is subject to large variations and can take three possible
values: p = 3, p = 5 and p = 8. The probabilities for p to
take those three values are h(1) = 0.2, h(2) = 0.5 and h(3) =
0.3, respectively. The initial value of p is equal to 5.

Fig. 7: Values of the performance functions f1 and f2 for
p = 3, p = 5 and p = 8, respectively

Figure 7 shows the values of the performance func-
tions f1 and f2 for p = 3, p = 5 and p = 8, respectively,
i.e., in different design environments. For p = 5, let us con-
sider the five Pareto optimal solutions: solution A obtained
for x = 1; solution B obtained for x = 2; solution C obtained
for x = 3; solution D obtained for x = 4 and solution E ob-
tained for x = 5. These solutions form the Pareto front in the
PF-Space and are alternative solutions for the designer. Their
new positions for p = 3 and p = 8 in the PF-Space are shown
in Fig. 7. The vertical line represents the constraint related
to the first performance function. Note that the solutions to
the right of this line are feasible, whereas the solutions to the
left are not feasible.

To assess the robustness index IRS for each alternative
solution, the samples around the nominal values are gener-
ated by Latin Hypercube Sampling (LHS) [77, 78, 79]. 1000

samples for each alternative solution are generated with re-
gard to the small variations in DV. Then IRS for each alterna-
tive solution can be assessed with Eqn. (2).

To determine the robustness index IRL associated with
each alternative solution, their new positions should be lo-
cated when p changes from its initial value to its new value.
The results can be found from Fig. 7. When p= 3, solution A
becomes unfeasible, then the index IF defined in Eqn. (3b) is
null for solution A. Solution B and solution C become Pareto
optimal amongst these five solutions. Solution D and Solu-
tion E are dominated by other alternative solutions. When
p = 8, all the alternative solutions are feasible and can not be
dominated by others. Then IRL for each alternative solution
can be calculated with Eqn. (3).

Table 1: Comparison of the alternative solutions with regard
to variations in small variations in DV x and large variations
in DEP p

Solution f1 f2 ∆ f S
1 ∆ f S

2 ∆ f L
1 ∆ f L

2

A 3.5 16 0.05 0.4024 1.5 33

B 4.5 9 0.05 0.3024 1.5 27

C 5.5 4 0.05 0.2024 1.5 21

D 6.5 1 0.05 0.1025 1.5 15

E 7.5 0 0.05 0.0025 1.5 9

Note that all Pareto optimal solutions have sufficiently
large variations in performance functions with regard to large
variations in DEPs. In Tab. 2, f1 and f2 denote the nominal
values of the performance functions for the alternative so-
lutions. ∆ f S

1 and ∆ f S
2 represent the largest distance of the

actual performance function values (1000 samples for each
alternative solution) and nominal performance function val-
ues in f1 and f2 respectively, with regard to the small varia-
tions in DV. ∆ f L

1 and ∆ f L
2 represent the largest distance of the

actual performance function values (3 samples for each alter-
native solution) and nominal performance function values in
f1 and f2 respectively, with regard to large variations in DEP.
If the traditional methods (results based on the difference be-
tween actual performance function values and nominal ones)
are selected to measure the robustness of the alternative so-
lutions, here is the order of the six solutions from the most
robust one to the least robust one: (1) E; (2) D; (3) C; (4) B;
(5) A. Even if solution E is the most robust one, ∆ f L

1,E and
∆ f L

2,E are still quite large. Obviously, ∆ f L
1,E >> ∆ f S

1,E and
∆ f L

2,E >> ∆ f S
2,E , so with regard to large variations in DEPs,

the traditional methods make little sense.
Here is the order of the six solutions from the most ro-

bust one to the least robust one while using the robustness



index IRL defined in Eq. (3a): (1) B; (1) C; (3) D; (4) E;
(5) A. Solution B and solution C are Pareto optimal no mat-
ter the value of DEP p. Therefore, the designer may select
solution B or solution C instead of solution E.

Fig. 8: The positions of the alternative solutions for the nu-
merical example in the RF-Space

Figure 8 illustrates the positions of the alternative solu-
tions in the RF-Space. In this space, one dimension is IRS,
another dimension is IRL. In this example, IRS and IRL are
two conflicting objectives, as shown in Fig. 8. Solutions C,
D, E form a new Pareto front in the RF-Space, which repre-
sents the most robust solutions amongst these five alternative
solutions. For a better understanding, the performance func-
tion values and their RIs are given in Tab. 2. The indices IF
and IP are also given in Tab. 2.

Thanks to the proposed method, the designer can select
the final solution from the new Pareto front in the RF-Space,
according to his/her requirement. For example, if the de-
signer prefers the IRS index, solution E will be selected. If the
designer prefers the IRL index, solution C will be selected.

4.2 Multi-Objective Robust Optimization Design of a
Floating Wind Turbine

4.2.1 Problem Formulation
Figure 9 illustrates a schematic of a floating horizon-

tal wind turbine rotor with two simplified morphing blades.
Each blade can adjust its tip twist angle and root twist angle
according to the reference wind speed [80]. However, it is
difficult to adjust the twist angles at all time. Therefore, the
twist angle is assumed to be adjusted according to the aver-
age wind speed. After setting the tip twist angle (γt ) and root
twist angle (γt ), the twist angles of the other elements are ad-
justed automatically and they are linearly distributed along
the blade.

The optimization problem at hand has two objective
functions: the produced power P by the wind turbine that

Fig. 9: Schematic of a floating HAWT rotor with two simpli-
fied morphing blades

should be maximized and the thrust force Fa that should
be minimized. Moreover, the produced power P should be
higher than 1 kW and lower than 25 kW.

P and Fa are calculated based on the Blade Element
Momentum Theory (BEMT) knowing the design parame-
ters. A simplified morphing blade with a constant profile
type (S809) along the span is used. For more details, the
reader is referred to [80].

To make a good comparison, we take an optimum result
as a reference blade, and its parameters are the initial design
parameters [80]. The sum of the root chord length cr and
the tip chord length ct is supposed to be constant and equal
to 1.095 m. Then the four DVs are: (i) the root twist angle γr;
(ii) the tip twist angle γt ; (iii) the chord length at the root cr;
(iv) the rotor rotational speed ω. The initial values, the lower
and upper bounds of the DVs are given in Tab. 3.

The other design parameters, such as the number of
blades (b), tip radius (rt ), root radius (rr), air density (ρ) and



Table 2: Comparison of five alternative solutions for the numerical example

Solutions f1 f2 IRS IF (x) IP(x, p1) IP(x, p2) IP(x, p3) IRL

A 3.5 16 0.0115 0 1 1 1 1

B 4.5 9 0.0092 1 1 1 1 0

C 5.5 4 0.0072 1 1 1 1 0

D 6.5 1 0.0057 1 0.3333 1 1 0.1333

E 7.5 0 0.0051 1 0.2 1 1 0.16

Table 3: The design variables

DV Initial Value Minimum Maximum Noise values

root twist angle γr (deg) 22.8 0 35 ±1 ( UD)

tip twist angle γt (deg) 3.61 -5 15 ±0.5 ( UD)

root chord length cr (m) 0.737 0.595 0.895 ±0.005 ( UD)

rotor rotational speed ω (rpm) 72 40 100 ±2 ( UD)

Table 4: The design environment parameters

DEP Value Noise

number of blades b 2 N/A

tip radius rt (m) 5 ±0.05 ( UD)

root radius rr (m) 1.27 ±0.005 ( UD)

air density ρ (kg/m3) 1.25 ±0.05 ( UD)

reference wind speed vre (m/s) 10 ±4 ( ND)

reference wind speed (vre) are taken as DEPs. Their nominal
values are fixed as shown in Tab. 4.

A MOOP is formulated as follows:

minimize f1(x,p) =−P (5a)
minimize f2(x,p) = Fa (5b)

over x = [γr γt cr ω] (5c)
p = [b rt rr ρ vre] (5d)

subject to 1 kW≤ P≤ 25 kW (5e)
0 deg≤ γr ≤ 35 deg (5f)
−5 deg≤ γt ≤ 15 deg (5g)

0.595 m≤ cr ≤ 0.895 m (5h)
40 rpm ≤ ω≤ 100 rpm (5i)

b = 2; rt = 5 m; rr = 1.27 m; (5j)

ρ = 1.25 kg/m3;vre = 10 m/s (5k)

For HAWTs, the variations in DVs and DEPs are un-
avoidable. Here, we assume that there are noise values in
DVs and DEPs, as shown in Tables 3 and 4. Most of them
are small variations. However, the noise values in refer-
ence wind speed (the performance functions are functionally
dependent on it) is quite large, compared with its nominal
value. The noise values of small variations are supposed to
be Uniform Distribution (UD). The noise values of the refer-
ence wind speed follow a Normal Distribution (ND) and the
corresponding standard deviation is equal to 2 m/s.

4.3 Results Analysis
According to the proposed method, the final solution

comes from the Pareto optimal set. In this paper, the Pareto
optimal solutions are obtained by using the genetic algorithm
(NSGA II [81]). The obtained Pareto front P for this prob-
lem is illustrated in Fig. 10, including 200 alternative solu-
tions.

To assess the robustness index IRS for each alternative
solution, the samples around the nominal values are gener-
ated by Latin Hypercube Sampling (LHS) [77, 78, 79]. 1000
samples for each alternative solution are generated with re-
gard to the small variations in DVs and DEPs. Then IRS for
each alternative solution can be assessed using with Eqn. (2).

To determine the robustness index IRL with regard to
large variations in one DEP for each alternative solution,
the new positions of the alternative solutions should be pre-



Fig. 10: The obtained Pareto front for the MOOP of HAWT
design

sented, when DEPs change from initial values to the new
values. Then the feasibility index and the Pareto optimality
Index of a solution can be determined.

In this problem, the wind speed has a continuous proba-
bility distribution, varying from 6 m/s to 14 m/s. To simplify
the problem, we calculate the probability distribution of the
wind speed, and convert it into a discrete probability distri-
bution problem. Table 5 shows the probability distribution
of the wind speed. The solution having the maximum PDF
amongst the N probabilities is appointed as the initial DEPs
p0, hence p0 = p5 in this problem.

Figure 11 illustrates the positions of the alternative so-
lutions in different design environments. The vertical lines
represent the constraints in the first objective function, i.e.,
the produced power P, then the solutions between the two
lines are feasible. From the results, we can see that some al-
ternative solutions are non-feasible in the new environments.
They are illustrated by red crosses in Fig. 11. The index IF
defined in Eqn. (3b) is null for those solutions. In the new en-
vironment, some alternative solutions are dominated by other
alternative solutions, then their index IP defined in Eqn. (3c)
is lower than one, but greater than zero. Then the IRL for each
alternative solution can be calculated with Eqn. (3a).

Figure 12 illustrates the positions of the alternative so-
lutions in the RF-Space. In this space, one dimension is IRS,
another dimension is IRL. In this example, IRS and IRL are
two conflicting objectives, as shown in Fig. 12. A new Pareto
front in the RF-Space appears, which represents the most ro-
bust solutions amongst the Pareto optimal solutions and de-
noted by PR(P).

For a good understanding of the two proposed robust-
ness indices defined by Eqn. (2) and Eqn. (3a), the six solu-
tions A, B, C, D, E and F are selected. Their corresponding
positions in the PF-Space and the RF-Space are illustrated in
Fig. 10 and Fig. 12. All alternative solutions and the initial
design are shown in Fig. 13. The initial design, solution F,

Fig. 12: The positions of the alternative solutions and initial
design in the RF-Space

is plotted in black and the other five solutions are plotted in
yellow.

Fig. 13: Comparison of all alternative solutions and solutions
A, B, C, D, E, F in the Decision space, Performance Function
space and Robustness Function space

Solution A has the minimum IRS value in thePR(P). So-
lution B dominates Solution F in the RF-Space. Solution C
has the minimum IRL value in the P . Solution D can be dom-
inated by many solutions such as Solutions B, C and E in the
RF-Space. Solution E dominates the initial design in the PF-
Space. The 3D models of the six selected solutions and the
values of their DVs are depicted in Fig. 14.



Fig. 11: The positions of the alternative solutions in different design environments

Fig. 14: 3D models for the six selected solutions A, B, C, D, E and F



Table 5: Probability distributions of wind speed

p1 p2 p3 p4 p5 (p0) p6 p7 p8 p9

vre [m/s] 6 7 8 9 10 11 12 13 14

h(p) 0.028 0.066 0.124 0.180 0.204 0.180 0.124 0.066 0.028

Note that the value of index IP of a solution depends on
its ranking amongst the Pareto optimal solutions. To deter-
mine the index IP of the initial design, i.e., solution F, we
include it into the Pareto optimal set (including 200 alterna-
tive solutions) and rank the 201 individuals to generate its
ranking in different DEPs. The performance function values
and the RIs for these six solutions are given in Tab. 6. For a
better understanding of index IRL, indices IF and IP of these
six solutions are also given in Tab. 6.

With regard to the small variations in DVs and DEPs,
each solution has 1000 generated samples in the PF-Space.
Figure 15 shows the samples and the nominal values of these
six solutions. It is apparent that Solution A is the most robust
one amongst the six solutions considering small variations
in DVs and DEPs as the dispersion of the two performance
functions is a minimum with regard to small variations in
DVs and DEPs for this solution. It matches with their posi-
tions in the RF-Space. The robustness indices IRS with regard
to small variations for the five other solutions are given in the
fourth column of Tab. 6. Here is the order of the six solutions
from the most robust one to the least robust one with respect
to IRS: (1) A; (2) B; (3) F; (4) E; (5) C; (6) D.

Table 7: Comparison of six solutions with regard to varia-
tions in DV and DEPs

Solutions −P (kW) Fa (kN) ∆PS ∆FS
a ∆PL ∆FL

a

A -5.32 0.609 0.576 0.0694 6.28 0.416

B -11.5 1.399 0.801 0.110 10.2 0.410

C -14.2 1.799 1.22 0.168 12.5 0.557

D -17.1 2.300 1.08 0.177 13.9 0.493

E -11.8 1.444 0.977 0.120 10.7 0.453

F -11.5 1.455 0.910 0.113 9.57 0.366

With regard to large variations in DEPs, all Pareto op-
timal solutions have sufficiently large variations in perfor-
mance functions. In Tab. 7,−P and Fa represent the nominal
performance function values of the alternative solutions. ∆PS

and ∆FS
a represent the largest distance of the actual perfor-

mance function values (1000 samples for each alternative so-
lution) and nominal performance function values in P and Fa
respectively, with regard to the small variations in DVs and
DEPs. ∆PL and ∆FL

a represent the largest distance of the ac-
tual performance function values (9 samples for each alterna-
tive solution) and nominal performance function values in P
and Fa respectively, with regard to large variations in DEPs.
The results show that ∆PL >> ∆PS and ∆FL

a >> ∆FS
a , so

with regard to large variations in DEPs, the traditional meth-
ods (results based on the difference of actual performance
function values and nominal ones) make little sense. On the
contrary, the method proposed in this paper is relevant. In-
deed, here is the order of the six solutions from the most ro-
bust one to the least robust one based on the IRL index: (1) C;
(1) B; (3) E; (4) D; (5) F; (6) A.

In summary, the designer can select the final solution
from the new Pareto front in the RF-Space, according to
his/her requirement. For example, if the designer prefers the
IRS, solution A should be selected. If the designer prefers the
IRL, solution C should be selected.

5 Conclusions and Future Work
In this paper, a new method for solving Multi-Objective

Robust Optimization Problems (MOROP) has been intro-
duced and two illustrative examples have been given to high-
light the main contributions of the paper. Two Robust-
ness Indices (RI) have been introduced to deal with MO-
ROP where not only small variations in Design Variables
(DVs) and Design Environment Parameters (DEPs) are con-
sidered, but also large variations in DEPs. The first ro-
bustness index, named IRS, characterizes the robustness of
MOOP against small variations in DVs and DEPs. The sec-
ond robustness index, named IRL, characterizes the robust-
ness of Multi-Objective Optimization Problems (MOOP)
against large variations in DEPs. The robustness index IRS
is calculated based on the standard deviations and the differ-
ences between the expected values and nominal values of the
performances. The smaller IRS, the more robust the design.
The robustness index IRL is calculated based on the solution’s
ability to be optimal in different design environments. The
smaller IRL, the more robust the design. To make a trade-
off between the two proposed robustness indices, a concept
of Robust Function Space (RF-Space) has been introduced.
Then each Pareto optimal solution has a position in the RF-
Space. The designer can select the final solution from the



Table 6: Comparison of different solutions

Solutions -P (kW) Fa (kN) IRS IF(x) IP(x,p1) IP(x,p2) IP(x,p3) IP(x,p4) IP(x,p5) IP(x,p6) IP(x,p7) IP(x,p8) IP(x,p9) IRL

A -5.322 0.609 0.0115 0 - - - - - - - - - 1

B -11.5 1.399 0.0208 1 1 1 1 1 1 1/4 1/6 1/10 1/4 0.322

C -14.2 1.799 0.0287 1 1/4 1 1 1/2 1 1 1 1 1 0.111

D -17.1 2.300 0.033 1 1 1 1 1/2 1 1/4 1/11 1/13 1/8 0.437

E -11.8 1.444 0.023 1 1 1 1/2 1/2 1 1 1/7 1/9 1/3 0.338

F -11.5 1.455 0.0219 1 1 1 1/2 1 1/5 1/11 1/13 1/16 1/19 0.601

Fig. 15: The generated samples and the nominal values of these six solutions with regard to small variations in DVs and
DEPs

Pareto optimal set based on its new position in the RF-Space.
However, some problems are still not solved. For instance,
it is not always an easy task to claim whether a variation is
small or large. Moreover, new formulations for IRS and IRL
should be discussed in the future.
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