Stochastic Path Perturbation Approach Applied to Non–Local Non–Linear Equations in Population Dynamics
| PROCEDENCIA(S): | Ingeniería y Tecnología, USS Santiago. |
|---|---|
| CATEGORÍA(S): | Ecología, Estadísticas y Probabilidades, Ingeniería y Tecnología, Matemáticas Aplicadas. |
| AUTOR(ES): | Miguel Angel, Fuentes / Manuel O, Caceres. |
| TIPO DE MATERIAL: | Artículos, Investigación. |
| ARCHIVO: |
Reconocimiento CC BY. Esta obra está bajo una Licencia Creative Commons Reconocimiento CC BY 4.0 Internacional.
We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.
